Công Thức Tính Tiệm Cận Của Hàm Số Chi Tiết Nhất – Toán 12

Công thức tính tiệm cận của hàm số chi tiết nhất - Toán lớp 12

1. Lí thuyết

a. Tiệm cận ngang

- Định nghĩa: Cho hàm số y=fx xác định trên một khoảng vô hạn (là khoảng dạng a;+∞, −∞;b hoặc −∞;+∞). Đường thẳng y=y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y=fx nếu ít nhất một trong các điều kiện sau được thỏa mãn.

limx→+∞fx=y0, limx→−∞fx=y0

Nghĩa là các giới hạn trên phải tồn tại hữu hạn

b. Tiệm cận đứng

- Định nghĩa: Đường thẳng x=x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y=fx nếu ít nhất một trong các điều kiện sau được thỏa mãn:

limx→x0+fx=+∞, limx→x0−fx=−∞limx→x0+fx=−∞, limx→x0−fx=+∞

Nghĩa là các giới hạn trái, phải tiến ra vô cùng.

2. Cách xác định Tiệm cận đứng (TCĐ) và Tiệm cận ngang (TCN)

- Dựa vào định nghĩa, ta tính:

+) limx→±∞fx. Nếu giới hạn này là một số hữu hạn y0

thì ta kết luận đường TCN là y=y0.

+) limx→x0+fx và limx→x0−fx. Trong đó x0 là điểm mà hàm số không xác định.

Nếu ít nhất một trong hai giới hạn này tiến tới vô cùng thì ta kết luận TCĐ là x=x0

- Hàm phân thức y=ax+bcx+d có TCN là y=ac và TCĐ là −dc

3. Ví dụ

VD1. Tìm các TCĐ và TCN của đồ thị hàm số

a. y=x+1x−2

b. y=3−2x3x+1

Lời giải:

a. TXĐ: D=ℝ\2

Ta có: limx→±∞x+1x−2=1 nên đường thẳng y=1 là TCN của đồ thị hàm số

Do limx→2+x+1x−2=+∞ (hoặc limx→2−x+1x−2=−∞ ) nên đường thẳng x=2 là TCĐ của đồ thị hàm số.

b. TXĐ: D=ℝ\−13

Vì limx→±∞3−2x3x+1=−23 nên đường thẳng y=−23 là TCN của đồ thị hàm số

Vì limx→−13+3−2x3x+1=+∞ (hoặc limx→−13−3−2x3x+1=−∞) nên đường thẳng x=−13 là TCĐ của đồ thị hàm số.

VD2. Tìm các TCĐ và TCN của đồ thị hàm số sau:

a. y=x2−12x+27x2−4x+5

b. y=2−xx2−4x+3

Lời giải:

a. TXĐ: D=ℝ⇒ đồ thị hàm số không có TCĐ

Vì limx→±∞x2−12x+27x2−4x+5=1 nên đường thẳng y=1 là TCN của đồ thị hàm số.

b. TXĐ: D=ℝ\1;3

Vì limx→±∞2−xx2−4x+3=0 nên đường thẳng y=0 là TCN của đồ thị hàm số.

Vì limx→1−2−xx2−4x+3=+∞ nên x=1 là một đường TCĐ

Vì limx→3+2−xx2−4x+3=−∞ nên x=3 là một đường TCĐ.

Vậy đồ thị hàm số có TCN là y=0; TCĐ là x=1 và x=3.

4. Luyện tập

Bài 1. Tìm các tiệm cận của đồ thị hàm số sau:

a. y=x3−x

b. y=2x+33−2x

c. y=5x+5−2

Bài 2. Tìm các tiệm cận đứng và ngang của đồ thị hàm số sau:

a. y=x2+3xx2−4

b. y=x2−3x+2x2−4x+5

c. y=x+2x−2

Bài 3. Đồ thị hàm số y=xx2−3x−4+x có bao nhiêu đường tiệm cận

Bài 4. Tìm m để đồ thị hàm số y=x2−mx+2x2−1 có đúng 2 đường tiệm cận.

Xem thêm tổng hợp công thức môn Toán lớp 12 đầy đủ và chi tiết khác:

Công thức xét tính đồng biến, nghịch biến của hàm số chi tiết nhất

Công thức tính cực trị của hàm số chi tiết nhất

Công thức tính GTNN - GTLN của hàm số chi tiết nhất

Công thức biện luận số nghiệm của phương trình dựa vào đồ thị chi tiết nhất

Công thức tiếp tuyến với đồ thị hàm số chi tiết nhất

Từ khóa » Tiệm Cận đứng Và Tiệm Cận Ngang Công Thức