Đạo Hàm Riêng | Maths 4 Physics & More...
Có thể bạn quan tâm
I. Đạo hàm riêng cấp một:
Cho z = f(x,y) là hàm theo hai biến số độc lập x, y.
Bây giờ, ta cố định giá trị của biến số y (cho y là hằng số).
Như vậy, ta sẽ có hàm số theo 1 biến số x. Ta xem xét sự thay đổi của hàm số mới này theo biến số x.
Giả sử rằng hàm số z = f(x,y) (coi y là hằng số) có đạo hàm theo biến số x, thì giá trị đạo hàm này sẽ là:
Ta ký hiệu giới hạn trên là , trong đó biến x ở chỉ số dưới, ngầm chỉ rằng đạo hàm được lấy theo biến x khi cố định biến y. Và gọi là đạo hàm riêng của hàm f theo biến x.
Vậy: chúng ta định nghĩa đạo hàm riêng của hàm f(x, y) theo biến x tại điểm (x0, y0) như là đạo hàm thường của hàm f(x, y0) tại điểm x = x0
I.1 Định nghĩa:
Đạo hàm riêng theo biến x của hàm z = f(x, y) tại điểm (x0, y0) là giới hạn (nếu có)
và được ký hiệu là đọc là “del f del x” “del z del x”.
Rõ ràng ta có:
Tương tự, ta có đạo hàm riêng theo biến số y:
Nhận xét:
1. Để chỉ ký hiệu đạo hàm riêng, ta dùng ký hiệu thay cho ký hiệu (vốn dùng để ký hiệu đạo hàm thường – đạo hàm của hàm 1 biến)
2 . Để tính đạo hàm riêng theo biến x, ta chỉ việc xem các biến còn lại là các hằng số và lấy đạo hàm như hàm số 1 biến số x.
3 . Các quy tắc lấy đạo hàm thường vẫn đúng trong trường hợp lấy đạo hàm riêng.
4. Trong thực hành, để tính , dựa vào định nghĩa, ta có hai cách:
- Cách 1: tìm , suy ra ( trong trường hợp hàm số xác định tại (x0, y0).
- Cách 2: Theo định nghĩa, Lập hàm tìm , suy ra giá trị thì đây chính là giá trị
5. Khi hàm số z = f(x, y) có các đạo hàm riêng theo các biến, vecto có các thành phần lần lượt là các đạo hàm riêng theo các biến của hàm f được gọi là vecto gradient, ký hiệu
Ta còn dùng ký hiệu thay cho . Ta sẽ đề cập chi tiết về grad f trong các phần sau.
II.2 Các ví dụ:
Ví dụ 1. Tính biết
Ta tính các đạo hàm riêng theo 2 cách:
Cách 1:
Suy ra:
Do đó:
Cách 2: Tính :
Thay giá trị y = 1, ta nhận được: là hàm theo một biến (biến x). Lúc này:
tương tự: là hàm theo một biến y và
Cả hai cách trên ta có cùng 1 kết quả. Bấy giờ, ta suy ra:
Tuy nhiên, để tìm thì rõ ràng cách 1 là tổng quát hơn, còn cách 2 chỉ có thể tìm được giá trị của đạo hàm tại 1 điểm cụ thể.
Ví dụ 2: Cho hàm
Tìm
Với hàm số f(x,y) này, ta không thể tìm hàm đạo hàm riêng , rồi suy ra giá trị đạo hàm riêng tại (0,0), vì hai hàm chỉ xác định với mọi (x,y) khác (0, 0).
Do đó, ta phải dùng định nghĩa để tính giá trị . Ta có:
Tương tự, ta cũng nhận được
Nhận xét:
1. Trong trường hợp này, ta có thể sử dụng cách 2 để tìm .
2. Ta đã biết: đối với hàm số 1 biến, nếu hàm số có đạo hàm tại x0 thì sẽ liên tục tại điểm đó. Tuy nhiên, Theo lý thuyết về giới hạn hàm số hai biến, ta đã biết hàm số trên không liên tục tại điểm (0, 0) mặc dù hàm số trên có 2 đạo hàm riêng tại (0,0). Vì vậy, việc tồn tại đạo hàm riêng chưa đảm bảo sự liên tục của hàm số.
Đánh giá:
Chia sẻ:
- In
Trang: 1 2
Thảo luận
50 bình luận về “Đạo hàm riêng”
Bình luận về bài viết này Hủy trả lời
Từ khóa » đạo Hàm Riêng Cấp 1 Và Cấp 2
-
Cách Làm Bài Tập đạo Hàm Riêng Cấp 1 Và Cấp 2 - Học 3 Giây
-
Đạo Hàm Cấp 2 Của Hàm Hai Biến. - Giảng Dạy - Học Tập
-
[TOÁN CAO CẤP - CHUYÊN ĐỀ 12] BÀI 12.2 - ĐẠO HÀM RIÊNG ...
-
[Giải Tích] Đạo Hàm Của Hàm Nhiều Biến Số - Hai's Blog
-
Cách Tính đạo Hàm Riêng Cấp 1 Và Cấp 2? - Banhoituidap
-
Tính Các đạo Hàm Riêng Hàm Nhiều Biến - Theza2
-
Cách Tìm đạo Hàm Riêng Cấp 2, Bài Toán Cực Trị Của Hàm 2 Biến(của ...
-
Tài Liệu Bài Giảng Môn Toán - Chương 2: Đạo Hàm Riêng Và Vi Phân
-
Bài Tập đạo Hàm Riêng Cấp 1 Của Hàm Nhiều Biến Bằng Quy Tắc
-
Bài 2. Đạo Hàm Riêng Cấp 2 Của Hàm 2 Biến - Hocmai
-
Bai Tap Co Loi Giai Dao Hamieng_va_vi_phan - SlideShare
thầy giải giúp e bài này với ạ x=2ln(cotant) y=tant+cotant tính y'(x) ạ
ThíchThích
Posted by Lương Thị Yên | 01/12/2014, 22:55 Reply to this commentthầy ơi cho e hỏi bài toán này được ko ạ cho f(x)=[sin4(x-1)]/(x-1) nếu x#1 f(1)=4 nếu x=1 tính f”(1) em cảm ơn thầy ạ
ThíchThích
Posted by carotmau | 22/05/2012, 21:38 Reply to this commentEm có 1 bài về đạo hàm hàm ẩn nhưng ko biết giải sao,mong mọi người giúp đỡ: Cho hàm ẩn xác định bởi:y^3 -(x^2 -2).y -2x^4=o.Tính y”(1)
ThíchThích
Posted by tung | 09/10/2011, 16:06 Reply to this commenty’ theo x = -2XY – 8 X^3. y”theo xx = -2-24X^2. Y’ theo y= 3Y^2 – X^2 + 2 Y” theo yy = 6y
ThíchThích
Posted by LanLan | 06/12/2011, 10:22 Reply to this commentxin thấy hướng dẫn dùm em bài này tìm z”x^2 nếu z = x^2 + y^2 ở đó y = y(x) đc xđ bới pt x^2 – xy + y^2 =1. Em mới học phần này nên ko bit cách lấy đạo hàm y^2 theo x ạ.
ThíchThích
Posted by 2907 | 25/04/2011, 09:52 Reply to this comment