Đồ Thị Hàm Số Y= Ax + B (a ≠ 0) | Chuyên đề Toán Lớp 9 Hay Nhất Tại ...

Đồ thị hàm số y= ax + b (a ≠ 0)
  • Siêu sale sách Toán - Văn - Anh Vietjack 25-12 trên Shopee mall
Trang trước Trang sau

Cách giải Đồ thị hàm số y= ax + b (a ≠ 0) lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Đồ thị hàm số y= ax + b (a ≠ 0).

  • Phương pháp giải Đồ thị hàm số y= ax + b (a ≠ 0)
  • Bài tập tự luận Đồ thị hàm số y= ax + b (a ≠ 0)
  • Bài tập tự luyện Đồ thị hàm số y= ax + b (a ≠ 0)

Đồ thị hàm số y= ax + b (a ≠ 0)

A. Phương pháp giải

Phương pháp

1, Đường thẳng y=ax+b có hệ số góc là a.

Quảng cáo

2, Hai đường thẳng song song thì có hệ số góc bằng nhau

3, Hai đường thẳng vuông góc thì có tích hệ số góc bằng -1

4, Đường thẳng y=ax+b(a > 0) tạo với tia Ox một góc thì

5, Cách vẽ đồ thị hàm số y=ax+b ( a ≠ 0).

1, Xét trường hợp b=0

Khi b=0 thì y=a.x. Đồ thị của hàm số y= ax là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm A(1; a).

2, Xét trường hợp y=ax+b với

Bước 1: Cho x=0 thì y=b, ta được điểm P(0;b) thuộc trục Oy.

Quảng cáo

Cho y= 0 thì x= -b/a , ta được điểm Q(-b/a;0) thuộc trục hoành Ox.

Bước 2: Vẽ đường thẳng đi qua hai điểm P và Q ta được đồ thị hàm số y=ax+b.

B. Bài tập tự luận

Bài 1: Vẽ đồ thị hàm số của các hàm số

a, y= 2x

b, y=-3x+3

Hướng dẫn giải

a, y=2x

Đồ thị hàm số y=2x đi qua điểm O(0; 0) và điểm A(1; 2)

Chuyên đề Toán lớp 9

b, y=-3x+3

Cho x=0 thì y=3, ta được điểm P(0; 3) thuộc trục tung Oy

Cho y=0 thì x=1, ta được điểm Q(1; 0) thuộc trục hoành Ox

Vẽ đường thẳng đi qua hai điểm P và Q ta được đồ thị hàm số y=-3x+3

Chuyên đề Toán lớp 9

Bài 2: a, Cho đồ thị hàm số y=ax+7 đi qua M(2; 11). Tìm a

b, Biết rằng khi x=3 thì hàm số y=2x+b có giá trị bằng 8, tìm b

c, Cho hàm số y=(m+1)x. Xác định m để đồ thị hàm số đi qua A(1; 2)

Hướng dẫn giải

a, Vì đồ thị hàm số y=ax+7 (1) đi qua M(2; 11) nên thay x=2; y=11 vào (1) ta được:11=2a+7. Từ đó suy ra a=2.

Vậy a=2

b, Thay y=8; x=3 vào hàm số y=2x+b ta được: 8=6+b. Suy ra b=2

Vậy b=2

c, Vì đồ thị hàm số y=(m+1)x (2) đi qua A(1; 2) nên thay x=1; y=2 vào (2) ta được: 2=(m+1).1. Từ đó suy ra m=1

Vậy m=1

Quảng cáo

Bài 3: Xác định hàm số y=ax+b trong mỗi trường hợp sau, biết đồ thị của hàm số là đường thẳng đi qua gốc tọa độ và:

a, Đi qua điểm A(3;2)

b, Có hệ số a= √3

c, Song song với đường thẳng y=3x+1

Hướng dẫn giải

Nhắc lại: Đồ thị hàm số đi qua gốc tọa độ O(0;0) có dạng y=ax (a ≠0)

a, Vì đồ thị hàm số y=ax+b (a ≠ 0) đi qua gốc tọa độ O(0;0) nên có dạng y=ax (a ≠ 0)

Vì đồ thị hàm số đi qua điểm A(3;2) nên ta có: 2=3.a ⇔ a = 2/3

Vậy hàm số cần tìm là y = 2/3x

b, Vì đồ thị hàm số y=ax+b (a ≠ 0) đi qua gốc tọa độ O(0;0) nên có dạng y=ax(a ≠ 0)

Vì hàm số đã cho có hệ số góc là a= √3 nên hàm số cần tìm là y= √3x

c, Vì đồ thị hàm số y=ax+b (a ≠ 0) đi qua gốc tọa độ O(0;0) nên có dạng y=ax( a ≠ 0)

Vì đồ thị hàm số y=ax (a ≠ 0) song song với đường thẳng y=3x+1 nên a=3.

Vậy hàm số cần tìm là y=3x.

Bài 4: Cho đường thẳng y=(k+1)x+k. (1)

a, Tìm giá trị của k để đường thẳng (1) đi qua gốc tọa độ.

b, Tìm giá trị của k để đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 2.

c, Tìm giá trị của k để đường thẳng (1) song song với đường thẳng y=5x-5.

Hướng dẫn giải

a, Đường thẳng y=ax+b đi qua gốc tọa độ khi b=0, nên đường thẳng y=(k+1)x+k qua gốc tọa độ khi k=0, khi đó hàm số là y=x.

b, Đường thẳng y=ax+b cắt trục tung tại điểm có tung độ bằng b. Do đó, đường thẳng y=(k+1)x+k cắt trục tung tại điểm có tung độ bằng 2 khi k=2.

Vậy k=2 và đường thẳng cần tìm là y=3x+2

c, Đường thẳng y=(k+1)x+k song song với đường thẳng y=5x-5 khi và chỉ khi k+1=5 và. Từ đó suy ra k=4.

Vậy hàm số cần tìm là y=5x+4.

Bài 5: a, Vẽ đồ thị của các hàm số y=x+1 và y=-x+3 trên cùng một mặt phẳng tọa độ.

b, Hai đường thẳng y=x+1 và y=-x+3 cắt nhau tại C và cắt trục Ox theo thứ tự tại A và B. Tìm tọa độ của các điểm A, B, C.

c, Tính chu vi và diện tích tam giác ABC.

Hướng dẫn giải

Quảng cáo

a, Đồ thị hàm số y=x+1 đi qua A(-1; 0) và (0; 1)

Đồ thị hàm số y=-x+3 đi qua B(3; 0) và (0; 3)

Chuyên đề Toán lớp 9

b, Với đường thẳng y=x+1:

Cho y=0 ta suy ra x=-1. Vì vậy, đường thẳng cắt trục Ox tại A(-1; 0)

Với đường thẳng y=-x+3:

Cho y=0 ta tuy ra x=3. Vì vậy, đường thẳng cắt trục Ox tại B(3; 0)

Gọi C (x; y) là giao điểm của đường thẳng y=x+1 và đường thẳng y=-x+3.

Vì C(x; y) thuộc vào cả 2 đường thẳng trên nên ta có: x+1=-x+3. Từ đó suy ra x=1

Thay x=1 vào hàm y=x+1 ta được y=2

Vậy C(1; 2)

C. Bài tập tự luyện

Bài 1. Cho hai hàm số y = x và y = 3x + 3

a) Vẽ đồ thị các hàm số trên trên cùng một hệ trục tọa độ;

b) Tìm tọa độ giao điểm M của hai đồ thị trên.

Bài 2. Cho hàm số y = (m + 5)x – m.

a) Đồ thị hàm số đi qua điểm A(– 2; – 2). Tìm m;

b) Xác định giá trị của tham số m để đồ thị hàm số:

Cắt trục hoành tại điểm có hoành độ bằng 3.

Cắt trục tung tại điểm có tung độ bằng – 4.

c) Vẽ đồ thị của hai hàm số tương ứng với các giá trị của m tìm được ở trên trên cùng hệ trục tọa độ Oxy và tìm tọa độ giao điểm của hai đồ thị vừa vẽ được

Bài 3. Cho hàm số y = 2x + 1 có đồ thị là d1 và y = 3 – x có đồ thị là d2.

a) Vẽ đồ thị hai hàm số trên cùng một mặt phẳng tọa độ;

b) Hai đường thẳng d1 và d2 cắt nhau tại C và cắt trục Ox theo thứ tự tại A và B. Tìm tọa độ của các điểm A, B, C;

c) Tính chu vi và diện tích của tam giác ABC.

Bài 4. Với giá trị nào của m thì đồ thị hàm số y = 4x + m + 2 và y = 1 – 2x – 5 – 2m cắt nhau tại một điểm trên trục tung?

Bài 5. Cho ba đường thẳng d1: y = 2x + 1; d2: y = x + 3; d3: y = 3x – 1

a) Vẽ đồ thị của ba đường thẳng trên cùng một hệ trục tọa độ;

b) Gọi A là giao điểm của hai đường thẳng d1 và d3. Tìm tọa độ giao điểm A;

c) Chứng minh ba đường thẳng trên đồng quy;

d) Với giá trị nào của điểm m thì đường thẳng y = (m – 1)x + m cũng đi qua giao điểm của tất cả các đường thẳng đó?

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

  • Đồ thị hàm số y= ax + b (a ≠ 0)
  • Đường thẳng song song và đường thẳng cắt nhau. Tìm tọa độ giao điểm
  • Chứng minh đồ thị hàm số luôn đi qua một điểm cố định

Mục lục các Chuyên đề Toán lớp 9:

  • Chuyên đề Đại Số 9
  • Chuyên đề: Căn bậc hai
  • Chuyên đề: Hàm số bậc nhất
  • Chuyên đề: Hệ hai phương trình bậc nhất hai ẩn
  • Chuyên đề: Phương trình bậc hai một ẩn số
  • Chuyên đề Hình Học 9
  • Chuyên đề: Hệ thức lượng trong tam giác vuông
  • Chuyên đề: Đường tròn
  • Chuyên đề: Góc với đường tròn
  • Chuyên đề: Hình Trụ - Hình Nón - Hình Cầu
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):

  • Giải mã đề thi vào 10 theo đề Hà Nội, Tp. Hồ Chí Minh (300 trang - từ 99k/1 cuốn)
  • Bộ đề thi thử 10 chuyên (120 trang - từ 99k/1 cuốn)
  • Cấp tốc 7,8,9+ Toán Văn Anh thi vào 10 (400 trang -từ 119k)
  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi vào 10 Toán Văn Anh của Hà Nội, Tp.Hồ Chí Minh... có lời giải

4.5 (243)

799,000đ

199,000 VNĐ

Sách Toán - Văn- Anh 6-7-8-9, luyện thi vào 10

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau Giải bài tập lớp 9 sách mới các môn học
  • Giải Tiếng Anh 9 Global Success
  • Giải sgk Tiếng Anh 9 Smart World
  • Giải sgk Tiếng Anh 9 Friends plus
  • Lớp 9 Kết nối tri thức
  • Soạn văn 9 (hay nhất) - KNTT
  • Soạn văn 9 (ngắn nhất) - KNTT
  • Giải sgk Toán 9 - KNTT
  • Giải sgk Khoa học tự nhiên 9 - KNTT
  • Giải sgk Lịch Sử 9 - KNTT
  • Giải sgk Địa Lí 9 - KNTT
  • Giải sgk Giáo dục công dân 9 - KNTT
  • Giải sgk Tin học 9 - KNTT
  • Giải sgk Công nghệ 9 - KNTT
  • Giải sgk Hoạt động trải nghiệm 9 - KNTT
  • Giải sgk Âm nhạc 9 - KNTT
  • Giải sgk Mĩ thuật 9 - KNTT
  • Lớp 9 Chân trời sáng tạo
  • Soạn văn 9 (hay nhất) - CTST
  • Soạn văn 9 (ngắn nhất) - CTST
  • Giải sgk Toán 9 - CTST
  • Giải sgk Khoa học tự nhiên 9 - CTST
  • Giải sgk Lịch Sử 9 - CTST
  • Giải sgk Địa Lí 9 - CTST
  • Giải sgk Giáo dục công dân 9 - CTST
  • Giải sgk Tin học 9 - CTST
  • Giải sgk Công nghệ 9 - CTST
  • Giải sgk Hoạt động trải nghiệm 9 - CTST
  • Giải sgk Âm nhạc 9 - CTST
  • Giải sgk Mĩ thuật 9 - CTST
  • Lớp 9 Cánh diều
  • Soạn văn 9 Cánh diều (hay nhất)
  • Soạn văn 9 Cánh diều (ngắn nhất)
  • Giải sgk Toán 9 - Cánh diều
  • Giải sgk Khoa học tự nhiên 9 - Cánh diều
  • Giải sgk Lịch Sử 9 - Cánh diều
  • Giải sgk Địa Lí 9 - Cánh diều
  • Giải sgk Giáo dục công dân 9 - Cánh diều
  • Giải sgk Tin học 9 - Cánh diều
  • Giải sgk Công nghệ 9 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
  • Giải sgk Âm nhạc 9 - Cánh diều
  • Giải sgk Mĩ thuật 9 - Cánh diều

Từ khóa » Cách Vẽ Pt đường Thẳng