GIỚI HẠN HÀM SỐ LƯỢNG GIÁC - 123doc

Trang 1

GIỚI HẠN HÀM SỐ LƯỢNG GIÁC

Dạng 4:

x 0

sin x

x

Câu 1: Tìm các giới hạn sau:

1)

x 0

sin 5x

lim

x

x 0

tan 2x lim 3x

x 0

1 cos x lim

sin x

x 0

1 cos x

lim

x

5) 3

x 0

sin 5x.sin 3x.sin x lim

45x

x 0

sin 7x sin 5x lim

sin x

7) limx 01 cos 5x

1 cos 3x

 8)

2

x 0

1 cos 2x lim

x.sin x

9) L limx 0 x.sin ax

1 cos ax

LỜI GIẢI

1)

sin 5x 1 sin 5x 1

2)

tan 2x 2 tan 2x 2

3)

2

x

2 sin

2 sin cos

x 0

1 cos x

lim

x

2 2

2

x

x

2

x 0

sin 5x.sin 3x.sin x

lim

45x

1 sin 5x sin 3x sin x 1 lim

6)

sin 7x sin 5x 2 cos 6x sin x

7)

2

( Vì x 0 x 0

sin

sin

1 cos 2x 1 cos 2x

1 cos 2x

2

Trang 2

9) x 0 x 0 x 0 x 0

2

(Vì x 0

ax

2

ax

sin

2

  và x 0

ax

2 lim

2

a

Câu 2: Tìm các giới hạn sau:

1)

x 0

1 cos ax

lim

1 cos bx

x 0

sin x.sin 2x sin nx lim

n!x

x 0

1 cos ax lim

x

(a 0)

x 0

sin x tan x

lim

x

5) 3

x 0

tan x sin x lim

sin x

 6)

x a

sin x sin a lim

x a

 7) limx bcos x cos b

x b

 8)

x 0

1 2x 1 lim

sin 2x

9)

x 0

cos(a x) cos(a x) lim

x

LỜI GIẢI

1)

2

sin

sin

b

2) L limx 0 sin x.sin 2x sin nxn

n!x

sin x.sin 2x sin nx sin x sin 2x sin nx

1.2.3 nx

Vậy L 1

3)

2 2

2

ax 4

2

(vì x 0

ax sin 2

ax 2

Vậy

2

a

L

4

sin x sin x sin x cos x 1

Trang 3

3

x cos x

2

x

2

lim 1, lim 1, lim

2

Vậy L 1

2



x 0

tan x sin x

lim

sin x

sin x cos x sin x cos x sin x

2

2

x 0

x sin

x 2

1 2

lim

2 sin x cos x

x

x a

2

x b

2

8)

x 0

1 2x 1

lim

sin 2x

x 0

lim sin 2x 1 2x 1 2

9)

cos(a x) cos(a x) 2 sin a sin x sin x

(Vì

x 0

sin x

x

  ) Vậy L2 sin a

Câu 2: Tìm các giới hạn sau:

1)

x c

tan x tan c

lim

x c

 2)

3

x 0

1 cos x lim

x sin x

3)

x a

sin x sin a lim

x 0

cos x cos x

lim

x

  

5)

x 0

sin 5x sin 3x lim

sin x

6) lim 1 x tanx 1  x

2

 7)

3

x 2

lim

tan(x 2)

 

 8)

x 0

1 cos x.cos 2x.cos 3x lim

1 cos x

Trang 4

9)    

2

x 0

sin a 2x 2 sin a x sin a

lim

x

2

x 0

tan a 2x 2 tan a x tan a lim

x

LỜI GIẢI

1)

x c

tan x tan c

lim

x c

lim

x c cos x cos c cos c

x c

sin(x c)

x c

2)

3

x 0

1 cos x

lim

x sin x

x 0

1 cos x 1 cos x cos x lim

x sin x

2

2

x 0

x

2 sin

2

x.2 sin cos

2

x 0

x sin 1 cos x cos x 3 2

2 cos

sin x sin a sin x sin a sin x sin a

x a x a

x a

2 cos sin sin x sin a

lim

2

2

x a

sin cos sin x sin a

lim

2

2 cos a.sin a sin 2a

4)

     

  

     

        

5) limx 0sin 5x sin 3x

sin x

2 cos 4x sin x

sin x

6) L lim 1 x tanx 1  x

2

  Đặt t x 1, vì x 1 t 0

L lim( t) tant 0 t 1 lim( t) tant 0 t lim t cottt 0

t 0 t 0

7)

3

x 2

lim

tan(x 2)

 

2

2

Trang 5

( Vì xlim2 x 2 1

tan(x 2)

 

8) limx 01 cos x.cos 2x.cos 3x

1 cos x

x 0

1 cos x cos 2x.cos 3x 1 cos 2x cos 3x 1 cos 3x

lim

1 cos x

1 cos x cos 2x.cos 3x 1 cos 2x cos 3x 1 cos 3x

2 2

3x

2 sin

2

2

3x sin 2 3x

4 sin cos cos 3x

2

x 2

2

x 0

sin a 2x 2 sin a x sin a

lim

x

2

x 0

sin a 2x sin a x sin a sin a x

lim

x

2

x 0

2 cos a sin 2 cos a sin

lim

x

2

x 0

x

sin

2

x

2

2

x 0

tan a 2x 2 tan a x tan a

lim

x

2

x 0

tan a 2x tan a x tan a x tan a

lim

x

Trang 6

x 0

cos(a 2x) cos(a x) cos(a x)cos a

lim

x

sin x cos a cos(a 2x) sin x 2 sin x sin(a x)

cos(a 2x) cos(a x) cos a cos(a 2x)cos(a x) cos a

2

3

x 0

lim

x cos(a 2x)cos(a x) cos a cos a

Câu 3: Tìm các giới hạn sau:

1) limx 0sin ax tan bx (a b 0)

(a b)x

x 0

cos 3x cos 5x.cos 7x lim

x

x 0

cos ax cos bx.cos cx

lim

x

4)    

x 0

sin a x sin a x lim

tan a x tan a x

5)

3 2

x 0

lim

sin x

6)

2

4

x 0

sin 2x sin x.sin 4x lim

x

x 0

1 cos 5x.cos 7x

lim

sin 11x

8) limx 0 1 1

sin x tan x

9) x 0

2

sin x sin 2x

lim

x

x 1 2 sin

2

10)

2

2

x 0

1 x cos x lim

x

LỜI GIẢI

1)

sin bx sin ax

x 0

cos 3x cos 5x.cos 7x

lim

x

2

x 0

cos 3x 1 1 cos 5x cos 7x 1 cos 7x lim

x

1 cos 5x cos 7x

cos ax 1 cos bx 1 cos cx 1 cos cx cos ax cos bx.cos cx

Trang 7

2 2 2

4)

sin a x sin a x 2 cos a sin x

sin 2x tan a x tan a x

cos(a x)cos(a x)

3

x 0

cos a cos(a x) cos(a x)

cos x

5)

3 2

x 0

lim

sin x

2

2

6)

sin 2x sin x.sin 4x sin 2x 2 sin x sin 2x cos 2x

4

x 0

sin 2x 2 sin x cos x 2 sin x cos 2x

lim

x

4 sin 2x.sin x.sin sin

x 0

        

x 0

1 cos 5x.cos 7x

lim

sin 11x

2 sin cos 7x 2 sin

Trang 8

2 2

8)

2

x

2 sin

sin x tan x sin x sin x sin x

2 sin cos

x 0

x

lim tan 0

2

2

x

x

x 1 2 sin

2 2

10)

2

2

x 0

1 x cos x

lim

x

2 2

2

2

x

2

Câu 3: Tìm các giới hạn sau:

1)

x

4

lim tan 2x.tan x

4

  

x 0

1 tan x 1 sin x lim

x

3)

x 1

x 3 2 lim

tan(x 1)

 

4) x

2

cos x

lim

x

2

 5)

 2

x

1 cos x lim

x

 

  6) 2

x 1

sin(x 1) lim

x 4x 3

x

6

2 sin x 1

lim

4 cos x 3

 8) 2

x 4

2 sin x 1 lim

2 cos x 1

 9)

x 6

6 lim

1 2 sin x

  

LỜI GIẢI

1)

x

4

L lim tan 2x.tan x

4

  

  Đặt t x

4

4

L lim tan 2t ( 1) tan t lim cot 2t.tan t

2

2

cos 2t sin t cos 2t sin t cos 2t 1

sin 2t cos t 2 sin t cos t cos t 2 cos t 2

Trang 9

2) 3

x 0

1 tan x 1 sin x

lim

x

3

3

A

sin x x cos x tan x sin x

x A.cos x

x 1 tan x 1 sin x

         

2

3

x 0

x

2 sin x sin

2 lim

x A.cos x

2

x 0

x sin

x

2

   

3)

(Vì limx 1tan(x 1)x 1 1, limx 1 1 41

x 3 2

Vậy L 1

4

4) x

2

cos x

L lim

x

2

 

 Đặt t x

2

2

cos t

tt

  

5)

 2

x

1 cos x

L lim

x

 

  Đặt t  x , vì x   t 0

2 2

tt

t

2

sin(x 1) sin(x 1)

x 1 x 3

x 4x 3

  Đặt t x 1, vì x 1 t 0

x

6

2 sin x 1

L lim

4 cos x 3

2 sin x 1 2 sin x 1

1 4 sin x

4 1 sin x 3

x

6

2 sin x 1

lim

1 2 sin x 1 2 sin x

6

lim

1 2 sin x 2

8)

2 cos x 1 2 1 sin x 1 1 2 sin x

Trang 10

   

x

4

2 sin x 1

lim

1 2 sin x 1 2 sin x

4

lim

2

1 2 sin x

9)

2 sin x 2 sin x sin

Câu 4: Tìm các giới hạn sau:

1) x

6

1 2 sin x

lim

x

6

 2)

x 4

4 lim

1 2 sin x

  

3) x

4

2 2 cos x lim

sin x

4

  

4)

2

2

x 0

x 1 cos 2x

lim

x

 

x 0

1 2x cos x x lim

x

6)

3

x 0

2x 1 1 x lim

sin 2x

7)

x

3

sin x 3 cos x

lim

sin 3x

x 0

1 cos x cos 2x lim

x

9)

3

2

x 0

1 cos x lim

tan x

LỜI GIẢI

1) x

6

1 2 sin x

lim

x

6

1

2 sin x 2 sin x sin

2 sin x 1

2 12

2

2)

2

Trang 11

3)

2

2 2 cos x

4)

2

2

x 0

x 1 cos 2x

lim

x

 

Đặt f x  x2 1 cos 2x2

x

 

 Tính

2

2

 

 

 Tính

2 2

x

Vậy lim f xx 0   1 2 5

x 0

1 2x cos x x

L lim

x

x

1 2x (1 x) 1 cos x 1 2x (1 x) 1 cos x

2

2

1 2x 1 x

1 2x (1 x)

2

2

Tính

2 2

x

2

Vậy lim f xx 0   1 1 0

2 2

6)

3

x 0

2x 1 1 x

L lim

sin 2x

sin 2x

Trang 12

 Tính

sin 2x

 Tính

sin 2x 2 sin x cos x 1 1 x sin x 2 cos x 1 1 x 4

Vậy lim f xx 0   1 1 7

3 4 12

7)

x

3

sin x 3 cos x

lim

sin 3x

x 3

sin x 3 cos x sin x 3 cos x lim

3 sin x 4 sin x sin x 3 4 sin x sin x 3 cos x

2

2

3 sin x 3 4 sin x sin x 3 cos x sin x sin x 3 cos x

x 0

1 cos x cos 2x

L lim

x

2

2

1 cos x cos 2x 1 cos x cos 2x

cos x 1 cos 2x sin x cos x sin x cos x cos 2x

x 1 cos x cos 2x x 1 cos x cos 2x

2

2 sin x cos x sin x sin x 2 cos x 1 3

2

x 1 cos x cos 2x

x 1 cos x cos 2x

9)

3

2

x 0

1 cos x

L lim

tan x

x

2 sin cos x

tan x 1 cos x cos x 4 sin cos 1 cos x cos x

2

2

lim

2 cos 1 cos x cos x

2

Câu 5: Tìm các giới hạn sau:

1)

3

2

x

4

tan x 1

lim

2 sin x 1

 2) 2

x 0

1 cos x cos 2x lim

x

3) limx 0 2 cot x

sin 2x

Trang 13

4)

x 0

1 2x 1 sin x

lim

3x 4 2 x

   5)

2 2

x 1 cos x lim

x

 

6)

x 0

1 sin 2x cos 2x

L lim

1 sin 2x cos 2x

7)

x

3

cos 3x 2 cos 2x 2

lim

sin 3x

8)

cos cos x 2 lim

x sin 2

  9)

1 cos x lim

LỜI GIẢI

1)

3

2 x

4

tan x 1

L lim

2 sin x 1

x

4

tan x 1

L lim

sin x cos x tan x tan x 1

x

4

sin x cos x lim

cos x sin x cos x sin x cos x tan x tan x 1

x

4

lim

3 cos x sin x cos x tan x tan x 1

x 0

1 cos x cos 2x

lim

x

cos x cos x cos 2x sin x cos x cos x cos 2x sin x

2

x

3) L limx 0 2 cot x

sin 2x

sin x cos x sin x sin x cos x sin x cos x

4)

x 0

1 2x 1 sin x

L lim

3x 4 2 x

  

2

 

Trang 14

 

x 1 1 2x 1

 

5)

2

2

x 1 cos x

lim

x

 

1 cos x

2

4

6)

x 0

1 sin 2x cos 2x

L lim

1 sin 2x cos 2x

2

2

1 sin 2x cos 2x 1 cos 2x sin 2x 2 sin x 2 sin x cos x

1 sin 2x cos 2x 1 cos 2x sin 2x 2 sin x 2 sin x cos x

2 sin x sin x cos x sin x cos x

sin x cos x

2 sin x sin x cos x

7)

3

cos 3x 2 cos 2x 2 4 cos x 4 cos x 3 cos x

x

3

cos x 2 cos x 3 2 cos x 1

lim

sin x 2 cos x 1 2 cos x 1

8)

cos cos x

2

lim

x sin

2

9)

1 cos x

lim

Trang 15

   

x

2 x

2

 

 

 

 

 

 

Từ khóa » Giới Hạn Hàm Số Lượng Giác