Hình Chóp Tam Giác đều S.ABC Có Cạnh đáy Bằng 3a ...

Đăng nhập Facebook GOOGLE Google IMG

CHỌN BỘ SÁCH BẠN MUỐN XEM

Hãy chọn chính xác nhé!

Trang chủ Lớp 11 Toán

Câu hỏi:

22/07/2024 11,456

Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC.

a) Tính khoảng cách từ S tới mặt phẳng đáy (ABC).

b) Tính khoảng cách giữa hai đường thẳng AB và SG.

Xem lời giải Câu hỏi trong đề: Giải SBT Toán 11 Chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian Bắt Đầu Thi Thử

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a

Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó Giải sách bài tập Toán 11 | Giải sbt Toán 11Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

Câu trả lời này có hữu ích không?

0 4

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AD = 2a và có cạnh SA vuông góc với mặt phẳng đáy (ABCD) với SA = a√6.

a) Tính khoảng cách từ A và B đến mặt phẳng (SCD).

b) Tính khoảng cách từ đường thẳng AD đến mặt phẳng (SBC).

Xem đáp án » 21/12/2021 34,271

Câu 2:

Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a2. Gọi I và K lần lượt là trung điểm của AD và BC.

a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).

b) Tính khoảng cách giữa hai đường thẳng AD và SB.

Xem đáp án » 21/12/2021 6,363

Câu 3:

Cho hình lăng trụ tam giác ABC.A'B'C'có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60° và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A'B'C') trùng với trung điểm của cạnh B'C'.

a) Tính khoảng cách giữa hai mặt phẳng đáy của lăng trụ.

b) Chứng minh rằng mặt bên BCC'B' là một hình vuông.

Xem đáp án » 22/12/2021 3,373

Câu 4:

Cho hình lập phương ABCD.A'B'C'D'.

a) Chứng minh đường thẳng BC' vuông góc với mặt phẳng (A'B'CD)

b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.

Xem đáp án » 21/12/2021 3,163

Câu 5:

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng khoảng cách từ các điểm A', B, D; C, B', D tới đường chéo AC' bằng nhau. Tính khoảng cách đó.

Xem đáp án » 21/12/2021 1,232

Câu 6:

Tính khoảng cách giữa hai cạnh đối trong một tứ diện đều cạnh a.

Xem đáp án » 21/12/2021 456

Câu 7:

Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng AC = BC = AD = BD = a và AB = p, CD = q.

Xem đáp án » 21/12/2021 308 Xem thêm các câu hỏi khác »

Đề thi liên quan

Xem thêm »
  • Trắc nghiệm tổng hơp Toán 11 (có đáp án) 76 đề 24154 lượt thi Thi thử
  • Trắc nghiệm Đề thi Toán 11 (có đáp án) 17 đề 8612 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 1: Hàm số lượng giác và phương trình lượng giác (có đáp án) 12 đề 5091 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 4: Giới hạn (có đáp án) 7 đề 4389 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 3: Một số phương trình lượng giác thường gặp (có đáp án) 8 đề 4104 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 5: Đạo hàm (có đáp án) 11 đề 3930 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 2: Tổ hợp - Xác suất (có đáp án) 15 đề 3367 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác (có đáp án) 6 đề 3295 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 2: Phương trình lượng giác cơ bản (có đáp án) 6 đề 3210 lượt thi Thi thử
  • Trắc nghiệm Biến cố và xác suất của biến cố có đáp án 4 đề 3121 lượt thi Thi thử
Xem thêm » Hỏi bài

Câu hỏi mới nhất

Xem thêm »
  • Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:

    \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)

    với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).

    Khi quay một vòng lần thứ nhất tính từ thời điểm t = 0 (phút), tại thời điểm nào của t thì cabin ở vị trí cao nhất? Ở vị trí đạt được chiều cao là 86 m?

    Một vòng quay trò chơi có bán kính 57 m Khi quay một vòng lần thứ nhất tính từ (ảnh 1) 280 18/04/2024 Xem đáp án
  • Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:

    \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)

    với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).

    Khi t = 0 (phút) thì khoảng cách từ cabin đến mặt đất bằng bao nhiêu?

    Một vòng quay trò chơi có bán kính 57 m Khi t = 0 (phút) thì khoảng cách từ cabin  (ảnh 1) 152 18/04/2024 Xem đáp án
  • Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:

    \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)

    với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).

    Tính chu kì của hàm số h(t)?

    Một vòng quay trò chơi có bán kính 57 m Tính chu kì của hàm số h(t) (ảnh 1) 133 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = sin x, tìm:

    Các khoảng giá trị của x để hàm số y = sin x nhận giá trị dương. 140 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = sin x, tìm:

    Các giá trị của x để sin x = \(\frac{1}{2}\);

    134 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = cos x, cho biết:

    Có bao nhiêu giá trị của x trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{3\pi }}{2}} \right)\) để cos x = 0.

    127 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = cos x, cho biết:

    Có bao nhiêu giá trị của x trên đoạn [ – 5π; 0] để cos x = 1;

    132 18/04/2024 Xem đáp án
  • Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

    y = cosx trên khoảng (19π; 20π), (– 30π; – 29π).

    132 18/04/2024 Xem đáp án
  • Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

    y = sin x trên khoảng \(\left( { - \frac{{19\pi }}{2};\, - \frac{{17\pi }}{2}} \right),\,\,\left( { - \frac{{13\pi }}{2};\, - \frac{{11\pi }}{2}} \right)\);

    134 18/04/2024 Xem đáp án
  • Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:

    \(y = \frac{1}{{4 - \sin x}}\).

    142 18/04/2024 Xem đáp án
Xem thêm »

Từ khóa » Hình Chóp Tam Giác đều Sabc Có Cạnh đáy Bằng 3a Cạnh Bên Bằng 3a