Hình Học 7 Bài 2: Hai Tam Giác Bằng Nhau - Hoc247
Có thể bạn quan tâm
Nội dung bài học sẽ giới thiệu đến các em khái niệm và tính chất của Hai tam giác bằng nhau cùng với những dạng bài tập liên quan. Bên cạnh đó là những bài tập có hướng dẫn giải chi tiết sẽ giúp các em nắm được phương pháp giải các bài toán liên quan đề Hai tam giác bằng nhau.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Định nghĩa
1.2. Kí hiệu
1.3. Qui ước
2. Bài tập minh hoạ
3. Luyện tập Bài 2 Chương 2 Hình học 7
3.1. Trắc nghiệm về Hai tam giác bằng nhau
3.2. Bài tập SGK về Hai tam giác bằng nhau
4. Hỏi đáp Bài 2 Chương 2 Hình học 7
Tóm tắt lý thuyết
1.1. Định nghĩa
Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với ba cạnh ấy của tam giác ấy.
1.2. Kí hiệu
Để kí hiệu bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết:
\(\Delta ABC = \Delta A'B'C'\)
1.3. Qui ước
Khi kí hiệu song bằng nhau của hai tam giác, các chữ cái chỉ tên các đỉnh tương ứng được viết theo cùng thứ tự.
\(\Delta ABC = \Delta A'B'C' \Leftrightarrow \left\{ \begin{array}{l}AB = A'B',\,AC = A'C',\,BC = B'C'\\\widehat A = \widehat {A'},\,\,\widehat B = \widehat {B'},\,\widehat C = \widehat {C'}\end{array} \right.\)
Ví dụ 1: Cho \(\Delta ABC = \Delta DMN\)
a. Viết đẳng thức trên dưới một vài dạng khác
b. Cho AB = 3cm, AC = 4cm, MN=5cm. Tính chu vi của mỗi tam giác nói trên. Có nhận xét gì?
Giải
a. Viết đẳng thức \(\Delta ABC = \Delta DMN\) dưới vài dạng khác:
\(\begin{array}{l}\Delta ACB = \Delta DNM,\Delta BAC = \Delta DMN,\Delta BCA = \Delta MND\\\Delta CAB = \Delta NDM,\Delta CBA = \Delta NMD\end{array}\)
b.
\(\Delta ABC = \Delta DMN \Rightarrow AB = DM,AC = DN,MN = BC.\)
Do AB=3cm, AC = 4cm, MN = 5cm Nên:
Chu vi \(\Delta ABC\) bằng AB+BC+CA=3+4+5=12 (cm)
Chu vi \(\Delta PMN\) bằng PM+MN+ND=3+4+5=12 (cm)
Nhận xét: Hai tam giác bằng nhau có chu vi bằng nhau.
Ví dụ 2: Cho \(\Delta ABC = \Delta MNO\). Biết \(\widehat A = {55^0},\widehat N = {75^0}\) tính các góc còn lại của mỗi tam giác:
Giải
\(\Delta ABC = \Delta MNO\) có \(\widehat A = {55^0},\widehat N = {75^0}\)
Do đó \(\widehat M = \widehat A = {55^0},\widehat B = \widehat N = {75^0}\)
\(\widehat C = {180^0}(\widehat A + \widehat B) = {180^0} - ({55^0} + {75^0}) = {50^0}\)
Nên \(\widehat O = \widehat C = {50^0}\)
Ví dụ 3: Cho hai tam giác bằng nhau ABC và DEG
a. Biết \(\widehat A = {20^0},\widehat C = {60^0}\) và \(\widehat E = {100^0}\)
Tìm số đo các góc còn lại của mỗi tam giác.
b. Biết DG = 5cm có thể tìm được độ dài của cạnh nào của tam giác ABC?
Giải
a. Vì \(\Delta ABC = \Delta DEG\) nên:
\(\widehat A = \widehat D = {20^0},\widehat B = {100^0};\,\widehat C = \widehat G = {60^0}\)
b. Dễ thấy AC=DG=5cm
Vậy có thể tìm được độ dài của cạnh AC=5cm.
Bài tập minh họa
Bài 1: Tam giác ABC bằng tam giác PQR, biết \(\widehat A = {50^0},\widehat R = {70^0},\widehat B = {60^0},\) cạnh PQ = 6cm, AC = 5cm.
Xác định độ lớn của các góc còn lại và độ dài các cạnh AB và PR của hai tam giác đó.
Giải
Theo đề bài \(\Delta ABC = \Delta PQR,\) nên các cạnh tương ứng của hai tam giác bằng nhau, nghĩa là:
AB = PQ; BC = QR; AC = PR và \(\widehat A = \widehat P;\,\widehat B = \widehat Q\) và \(\widehat C = R\)
Mà \(\widehat A = {50^0},\widehat R = {70^0},\widehat B = {60^0}\) nên \(\widehat P = {50^0},\widehat Q = {60^0},C = {70^0}\) và PQ = 6cm; AC = 5cm nên AB = 6M, PR = 5cm.
Bài 2: Cho tam giác ABC có chu vi bằng 21 cm. Độ dài cạnh là ba số lẻ liên tiếp và AB < BC < CA.
Tìm độ dài các cạnh của tam giác PQR biết tam giác ABC bằng tam giác PQR.
Giải
Gọi độ dài cạnh AB là 2n-1 thì độ dài cạnh BC là 2n + 1 và độ dài cạnh CA là 2n+3.
Theo đề bài, ta có:
\(AB + BC + CA = 21 \Rightarrow (2n - 1) + (2n + 1) + (2n + 3)\)
\(21 \Rightarrow 6n = 18 \Rightarrow n = 3\)
Vậy AB = 5cm; BC = 7cm; CA = 9cm
\(\Delta ABC = \Delta AQR\) nên ta có:
\(\begin{array}{l}PQ = AB = 5cm;QR = BC = 7cm\\RP = CA = 9cm\end{array}\)
Bài 3: Cho tam giác ABC có M thuộc cạnh BC sao cho \(\Delta AMB = \Delta AMC.\) Chứng minh rằng:
a. M là trung điểm của BC
b. AM là tia phân giác của gốc \(\widehat A\)
c. \(AM \bot BC\)
Giải
a. Ta có \(\Delta AMB = \Delta AMC \Rightarrow MB = MC\)
Ta lại có: \({M_2}\) nằm giữa B và C nên M là trung điểm của BC
b. Từ \(\Delta AMB = \Delta AMC\) suy ra: \(\widehat {MAB} = \widehat {MAC}\) mà \(\widehat {MAB} + \widehat {MAC} = \widehat A\)
\( \Rightarrow \widehat {MAB} = \widehat {MAC} = \frac{1}{2}.\widehat {BAC}\)
Ta lại có tia AM nằm giữa hai tia AB và AC nên: tia AM là tia phân giác của \(\Delta ABC\)
c. Từ hai tam giác AMB và AMC bằng nhau nên ta có:
\(\widehat {AMB} = \widehat {AMC}\) mà M thuộc cạnh BC nên:
\(\widehat {AMB} + \widehat {AMC} = {90^0}\)
Hay \(AM \bot BC.\)
3. Luyện tập Bài 2 Chương 2 Hình học 7
Qua bài giảng Hai tam giác bằng nhaunày, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
- Định lí, kí hiệu hai tam giác bằng nhau
3.1. Trắc nghiệm về Hai tam giác bằng nhau
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Hình học 7 Bài 2 cực hay có đáp án và lời giải chi tiết.
-
Câu 1:
Cho \(\Delta ABC = \Delta MNP\). Chọn câu sai.
- A. AB = MN
- B. AC = NP
- C. \(\widehat A = \widehat M\)
- D. \(\widehat P = \widehat C\)
-
Câu 2:
Cho \(\Delta ABC = \Delta D{\rm{EF}}\). Biết \(\widehat A = {33^0}\). Khi đó
- A. \(\widehat D = {33^0}\)
- B. \(\widehat D = {42^0}\)
- C. \(\widehat E = {33^0}\)
- D. \(\widehat D = {66^0}\)
-
Câu 3:
Cho hai tam giác ABC và DEF có AB = EF, BC = FD, AC = ED, \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\) . Khi đó
- A. \(\Delta ABC = \Delta D{\rm{EF}}\)
- B. \(\Delta ABC = \Delta {\rm{EFD}}\)
- C. \(\Delta ABC = \Delta {\rm{EDF}}\)
- D. \(\Delta ACB = \Delta {\rm{EFD}}\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK về Hai tam giác bằng nhau
Các em có thể xem thêm phần hướng dẫn Giải bài tập Hình học 7 Bài 2 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 10 trang 111 SGK Toán 7 Tập 1
Bài tập 11 trang 112 SGK Toán 7 Tập 1
Bài tập 12 trang 112 SGK Toán 7 Tập 1
Bài tập 13 trang 112 SGK Toán 7 Tập 1
Bài tập 14 trang 112 SGK Toán 7 Tập 1
Bài tập 19 trang 139 SBT Toán 7 Tập 1
Bài tập 20 trang 139 SBT Toán 7 Tập 1
Bài tập 21 trang 140 SBT Toán 7 Tập 1
Bài tập 22 trang 140 SBT Toán 7 Tập 1
Bài tập 23 trang 140 SBT Toán 7 Tập 1
Bài tập 24 trang 140 SBT Toán 7 Tập 1
Bài tập 25 trang 140 SBT Toán 7 Tập 1
Bài tập 26 trang 140 SBT Toán 7 Tập 1
Bài tập 2.1 trang 140 SBT Toán 7 Tập 1
Bài tập 2.2 trang 140 SBT Toán 7 Tập 1
4. Hỏi đáp Bài 2 Chương 2 Hình học 7
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 7 HỌC247
NONEBài học cùng chương
Hình học 7 Bài 1: Tổng ba góc của một tam giác Hình học 7 Bài 3: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (ccc) Hình học 7 Bài 4: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (cgc) Hình học 7 Bài 5: Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc (gcg) Hình học 7 Bài 6: Tam giác cân Hình học 7 Bài 7: Định lí Pi-ta-go ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORKXEM NHANH CHƯƠNG TRÌNH LỚP 7
Toán 7
Toán 7 Kết Nối Tri Thức
Toán 7 Chân Trời Sáng Tạo
Toán 7 Cánh Diều
Giải bài tập Toán 7 KNTT
Giải bài tập Toán 7 CTST
Giải bài tập Toán 7 Cánh Diều
Trắc nghiệm Toán 7
Ngữ văn 7
Ngữ Văn 7 Kết Nối Tri Thức
Ngữ Văn 7 Chân Trời Sáng Tạo
Ngữ Văn 7 Cánh Diều
Soạn Văn 7 Kết Nối Tri Thức
Soạn Văn 7 Chân Trời Sáng Tạo
Soạn Văn 7 Cánh Diều
Văn mẫu 7
Tiếng Anh 7
Tiếng Anh 7 Kết Nối Tri Thức
Tiếng Anh 7 Chân Trời Sáng Tạo
Tiếng Anh 7 Cánh Diều
Trắc nghiệm Tiếng Anh 7 KNTT
Trắc nghiệm Tiếng Anh 7 CTST
Trắc nghiệm Tiếng Anh 7 Cánh Diều
Giải Sách bài tập Tiếng Anh 7
Khoa học tự nhiên 7
Khoa học tự nhiên 7 KNTT
Khoa học tự nhiên 7 CTST
Khoa học tự nhiên 7 Cánh Diều
Giải bài tập KHTN 7 KNTT
Giải bài tập KHTN 7 CTST
Giải bài tập KHTN 7 Cánh Diều
Trắc nghiệm Khoa học tự nhiên 7
Lịch sử và Địa lý 7
Lịch sử & Địa lí 7 KNTT
Lịch sử & Địa lí 7 CTST
Lịch sử & Địa lí 7 Cánh Diều
Giải bài tập LS và ĐL 7 KNTT
Giải bài tập LS và ĐL 7 CTST
Giải bài tập LS và ĐL 7 Cánh Diều
Trắc nghiệm Lịch sử và Địa lí 7
GDCD 7
GDCD 7 Kết Nối Tri Thức
GDCD 7 Chân Trời Sáng Tạo
GDCD 7 Cánh Diều
Giải bài tập GDCD 7 KNTT
Giải bài tập GDCD 7 CTST
Giải bài tập GDCD 7 Cánh Diều
Trắc nghiệm GDCD 7
Công nghệ 7
Công nghệ 7 Kết Nối Tri Thức
Công nghệ 7 Chân Trời Sáng Tạo
Công nghệ 7 Cánh Diều
Giải bài tập Công nghệ 7 KNTT
Giải bài tập Công nghệ 7 CTST
Giải bài tập Công nghệ 7 Cánh Diều
Trắc nghiệm Công nghệ 7
Tin học 7
Tin học 7 Kết Nối Tri Thức
Tin học 7 Chân Trời Sáng Tạo
Tin học 7 Cánh Diều
Giải bài tập Tin học 7 KNTT
Giải bài tập Tin học 7 CTST
Giải bài tập Tin học 7 Cánh Diều
Trắc nghiệm Tin học 7
Cộng đồng
Hỏi đáp lớp 7
Tư liệu lớp 7
Xem nhiều nhất tuần
Video Toán nâng cao lớp 7
Đề cương HK1 lớp 7
Tiếng gà trưa - Xuân Quỳnh - Ngữ văn 7 Cánh Diều
Quê hương - Tế Hanh - Ngữ văn 7 Kết Nối Tri Thức
Con chim chiền chiện - Huy Cận - Ngữ văn 7 Chân Trời Sáng Tạo
Toán 7 Cánh diều Bài tập cuối chương 1
Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ
Toán 7 CTST Bài 2: Các phép tính với số hữu tỉ
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Chứng Minh Hai Tam Giác Bằng Nhau Toán Lớp 7
-
Các Trường Hợp Bằng Nhau Của Tam Giác
-
Phương Pháp Chứng Minh Hai Tam Giác Bằng Nhau - Thủ Thuật
-
Chứng Minh Hai Tam Giác Bằng Nhau Toán Lớp 7
-
Ví Dụ Cách Chứng Minh Hai Tam Giác Bằng Nhau - Trường Quốc Học
-
Bài Tập Chứng Minh 2 Tam Giác Bằng Nhau - Thả Rông
-
3 Cách Chứng Minh Hai Tam Giác Bằng Nhau (có Ví Dụ Dễ Hiểu)
-
Các Trường Hợp Bằng Nhau Của Tam Giác - Bài Tập Hình Học Lớp 7
-
18. Ôn Tập Hai Tam Giác Bằng ml - Cửu Dương Thần Công . Com
-
CHỨNG MINH HAI TAM GIÁC BẰNG NHAU TRƯỜNG HỢP CẠNH ...
-
Hai Tam Giác Bằng Nhau - Toán 7
-
Một Số Kinh Nghiệm Cách Chứng Minh Hai Tam Giác Bằng Nhau Lớp 7
-
Tuyển Tập Những Bài Tập Hay Gặp Về Hai Tam Giác Bằng Nhau Hình ...
-
HÌNH HỌC CHUYÊN ĐỀ HAI TAM GIÁC BẰNG NHAU - TOÁN LỚP 7
-
Giải Toán 7 Bài 2: Hai Tam Giác Bằng Nhau