Hình Học 7 Bài 5: Tính Chất Tia Phân Giác Của Một Góc - Luyện Tập
Có thể bạn quan tâm
Nội dung bài học sẽ giới thiệu đến các em khái niệm và tính chất của Tính chất tia phân giác của một góc - Luyện tập cùng với những dạng bài tập liên quan. Bên cạnh đó là những bài tập có hướng dẫn giải chi tiết sẽ giúp các em nắm được phương pháp giải các bài toán liên quan đề hai góc đối đỉnh.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Định nghĩa 1 (định lý thuận)
1.2. Định lý 2 (định lý đảo)
2. Bài tập minh hoạ
3. Luyện tập Bài 5 Chương 3 Hình học 7
3.1. Trắc nghiệm về Tính chất tia phân giác của một góc
3.2. Bài tập SGK về Tính chất tia phân giác của một góc
4. Hỏi đáp Bài 5 Chương 3 Hình học 7
Tóm tắt lý thuyết
1.1. Định nghĩa 1 (định lý thuận)
Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.
Giả thiết:
* M nằm trên tia phân giác của góc xOy
* \(MA \bot Ox,\,MB \bot Oy\)
Kết luận:
* MA = MB
1.2. Định lý 2 (định lý đảo)
Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.
Giả thiết:
* M nằm trong góc xOy
* \(MA \bot Ox,\,\,MB \bot Oy\)
* MA = MB
Kết luận:
* M nằm trên tia phân giác của góc xOy.
Nhận xét: Tập hợp các điểm nằm bên trong một góc và cách đều hai cạnh của góc là tia phân giác của góc đó.
Ví dụ 1: Cho tam giác cân ABC (AB = AC). Các đường cao BH và CK cắt nhau tại I. Chứng minh AI là phân giác của góc BAC.
Giải
Ta có: \(\widehat {{C_1}} = \widehat {{B_1}}\) (cùng phụ \(\widehat A\)) (1)
Suy ra: \(\widehat {{C_2}} = \widehat {{B_2}}\)
Do đó \(\Delta IBC\) cân tại tại I nên IB = IC (2)
Từ (1) và (2) ta có:
\(\Delta IHC = \Delta IKB\) (cạnh huyền, góc nhọn)
Nên IH=IK
Vậy AI là phân giác của góc BAC.
Ví dụ 2: Cho góc vuông xOy và tam giác vuông cân ABC có \(\widehat A = {90^0}\), B thuộc Ox, C thuộc Oy, A và O thuộc hai nửa mặt phẳng đối nhau bờ BC. Chứng minh rằng OA là tia phân giác của góc xOy.
Giải
Vẽ \(AH \bot Ox,\,\,AK \bot Oy\)
Xét \(\Delta KAC\) và \(\Delta HAB\) có:
\(\widehat {KAC} = \widehat {HAB}\) (cùng phụ góc (CAH)
AC = AB (gt)
Nên \(\Delta KAC = \Delta HAB\) (cạnh huyền, góc nhọn)
Suy ra AK = AH
Vậy OA là tia phân giác của góc xOy.
Ví dụ 3: Cho \(\Delta ABC\) vuông tại A. Dựng ở nửa mặt phẳng bờ BC, không chứa A tam giác vuông cân CDB tại D. Chứng minh AD là phân giác củ góc BAC.
Giải
Ta có:
Hạ \(DP \bot AB,DQ \bot AC\)
Xét \(\Delta DBP\) và \(\Delta DCQ.\) Có \(\widehat P\) và \(\widehat Q = 1v\)
DB – DC (gt)
\(\widehat {BDP} = \widehat {CDQ}\) (góc có cạnh tương ứng vuông góc)
Vậy \(\Delta DBP = \Delta DCQ\,\,(g.c.g)\)
Suy ra DP = DQ
Điều này chứng tỏ D nằm trên phân giác của góc BAC, tức là AD là phân giác của góc BAC.
Bài tập minh họa
Bài 1: Chứng minh rằng trong một tam giác ba phân giác của hai góc ngoài và một góc trong không kề với chúng gặp nhau tại một điểm.
Giải
Gọi K là giao điểm hai đường phân giác góc ngoài tại B và C. Từ K hạ \(KD \bot BC,\,\,KE \bot AB\) và \(KF \bot AC.\)
Theo tính chất về đường phân giác ta có:
KD = KE và KD = KF
Suy ra KE = KF. Điều này chứng tỏ K nằm trên phân giác của góc BAC.
Vậy hai phân giác ngoài đỉnh B và C và phân giác trong tại đỉnh A của tam giác ABC cắt nhau tại một điểm.
Bài 2: Các phân giác ngoài của \(\Delta ABC\) cắt nhau tạo thành \(\Delta {\rm{EFG}}\).
a, Tính các góc của \(\Delta {\rm{EFG}}\)theo các góc của \(\Delta ABC\)
b. Chứng minh các phân giác trong của \(\Delta ABC\) đi qua các đỉnh E, F, G.
Giải
a. Kí hiệu như hình vẽ:
Trong \(\Delta GAB\) có: \(\widehat G = {180^0} - \frac{1}{2}(\widehat {xAB} + \widehat {yBA})\)
Mà \(\widehat {yAB} = \widehat B + \widehat C\) (góc ngoài tại A của \(\Delta ABC)\)
\(\widehat {yBA} = \widehat A + \widehat C\) (góc ngoài tại B của \(\Delta ABC)\)
Suy ra \(\widehat G = {180^0} - \frac{1}{2}(\widehat A + \widehat B + 2\widehat C)\)
\( = {180^0} - \frac{1}{2}({180^0} + \widehat C)\) vì \(\widehat A + \widehat B + \widehat C = {180^0}\)
\( = {90^0} - \frac{1}{2}\widehat C = \frac{{{{180}^0} - \widehat C}}{2} = \frac{{\widehat A + \widehat B + \widehat C - \widehat C}}{2}\)
Vậy \(\widehat G = \frac{{\widehat A + \widehat B}}{2}\)
Tương tự: \(\widehat F = \frac{{\widehat A + \widehat C}}{2}\)
\(\widehat E = \frac{{\widehat B + \widehat C}}{2}\)
b, Kẻ GH, GK, GM lần lượt vuông góc với AC, AB, BC.
Ta có: \(GH = GK\) (vì G thuộc phân giác \(\widehat {xAB}\) )
GK = GM (vì G thuộc phân giác \(\widehat {yBA}\))
Suy ra GH = GM, nên G nằm trên đường phân giác của \(\widehat {ACB}\) hay đường phân giác của góc C đi qua G.
Tương tự đường phân giác của góc B đi qua F, đường phân giác của góc A đi qua E.
3. Luyện tập Bài 5 Chương 3 Hình học 7
Qua bài giảng Tính chất tia phân giác của một gócnày, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
- Nắm vững định nghĩa, tính chất của tia phân giác của một góc
3.1. Trắc nghiệm về Tính chất tia phân giác của một góc
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Hình học 7 Chương 3 Bài 5 cực hay có đáp án và lời giải chi tiết.
-
Câu 1:
Điểm E nằm trên tia phân giác góc A của tam giác ABC ta có
- A. E nằm trên tia phân giác góc B
- B. E cách đều hai cạnh AB, AC
- C. E nằm trên tia phân giác góc C
- D. EB = EC
-
Câu 2:
Cho góc ∠xOy = 600, điểm A nằm trong góc đó và cùng cách đều Ox và Oy một khoảng bằng 6 cm. Độ dài đoạn thẳng OA là:
- A. 6 cm
- B. 8 cm
- C. 10 cm
- D. 12 cm
-
Câu 3:
Cho điểm A nằm trong góc vuông xOy. Gọi M và N lần lượt là chân đường vuông góc kẻ từ đỉnh A đến Ox và Oy. Biết AM = AN = 4 cm. Khi đó:
- A. OM = ON > 4 cm
- B. OM = ON < 4 cm
- C. OM = ON = 4 cm
- D. OM ≠ ON
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK về Tính chất tia phân giác của một góc
Các em có thể xem thêm phần hướng dẫn Giải bài tập Hình học 7 Chương 3 Bài 5 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 31 trang 70 SGK Toán 7 Tập 2
Bài tập 32 trang 70 SGK Toán 7 Tập 2
Bài tập 33 trang 70 SGK Toán 7 Tập 2
Bài tập 34 trang 71 SGK Toán 7 Tập 2
Bài tập 35 trang 71 SGK Toán 7 Tập 2
Bài tập 40 trang 44 SBT Toán 7 Tập 2
Bài tập 41 trang 44 SBT Toán 7 Tập 2
Bài tập 42 trang 45 SBT Toán 7 Tập 2
Bài tập 43 trang 45 SBT Toán 7 Tập 2
Bài tập 44 trang 45 SBT Toán 7 Tập 2
4. Hỏi đáp Bài 5 Chương 3 Hình học 7
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 7 HỌC247
NONEBài học cùng chương
Hình học 7 Bài 1: Quan hệ giữa góc và cạnh đối diện trong một tam giác - Luyện tập Hình học 7 Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu - Luyện tập Hình học 7 Bài 3: Quan hệ giữa ba cạnh của một tam giác Bất đẳng thức tam giác - Luyện tập Hình học 7 Bài 4: Tính chất ba đường trung tuyến của tam giác - Luyện tập Hình học 7 Bài 6: Tính chất ba đường phân giác của tam giác - Luyện tập Hình học 7 Bài 7: Tính chất đường trung trực của một đoạn thẳng - Luyện tập ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORKXEM NHANH CHƯƠNG TRÌNH LỚP 7
Toán 7
Toán 7 Kết Nối Tri Thức
Toán 7 Chân Trời Sáng Tạo
Toán 7 Cánh Diều
Giải bài tập Toán 7 KNTT
Giải bài tập Toán 7 CTST
Giải bài tập Toán 7 Cánh Diều
Trắc nghiệm Toán 7
Đề thi giữa HK1 môn Toán 7
Ngữ văn 7
Ngữ Văn 7 Kết Nối Tri Thức
Ngữ Văn 7 Chân Trời Sáng Tạo
Ngữ Văn 7 Cánh Diều
Soạn Văn 7 Kết Nối Tri Thức
Soạn Văn 7 Chân Trời Sáng Tạo
Soạn Văn 7 Cánh Diều
Văn mẫu 7
Đề thi giữa HK1 môn Ngữ Văn 7
Tiếng Anh 7
Tiếng Anh 7 Kết Nối Tri Thức
Tiếng Anh 7 Chân Trời Sáng Tạo
Tiếng Anh 7 Cánh Diều
Trắc nghiệm Tiếng Anh 7 KNTT
Trắc nghiệm Tiếng Anh 7 CTST
Trắc nghiệm Tiếng Anh 7 Cánh Diều
Giải Sách bài tập Tiếng Anh 7
Đề thi giữa HK1 môn Tiếng Anh 7
Khoa học tự nhiên 7
Khoa học tự nhiên 7 KNTT
Khoa học tự nhiên 7 CTST
Khoa học tự nhiên 7 Cánh Diều
Giải bài tập KHTN 7 KNTT
Giải bài tập KHTN 7 CTST
Giải bài tập KHTN 7 Cánh Diều
Trắc nghiệm Khoa học tự nhiên 7
Đề thi giữa HK1 môn KHTN 7
Lịch sử và Địa lý 7
Lịch sử & Địa lí 7 KNTT
Lịch sử & Địa lí 7 CTST
Lịch sử & Địa lí 7 Cánh Diều
Giải bài tập LS và ĐL 7 KNTT
Giải bài tập LS và ĐL 7 CTST
Giải bài tập LS và ĐL 7 Cánh Diều
Trắc nghiệm Lịch sử và Địa lí 7
Đề thi giữa HK1 môn LS và ĐL 7
GDCD 7
GDCD 7 Kết Nối Tri Thức
GDCD 7 Chân Trời Sáng Tạo
GDCD 7 Cánh Diều
Giải bài tập GDCD 7 KNTT
Giải bài tập GDCD 7 CTST
Giải bài tập GDCD 7 Cánh Diều
Trắc nghiệm GDCD 7
Đề thi giữa HK1 môn GDCD 7
Công nghệ 7
Công nghệ 7 Kết Nối Tri Thức
Công nghệ 7 Chân Trời Sáng Tạo
Công nghệ 7 Cánh Diều
Giải bài tập Công nghệ 7 KNTT
Giải bài tập Công nghệ 7 CTST
Giải bài tập Công nghệ 7 Cánh Diều
Trắc nghiệm Công nghệ 7
Đề thi giữa HK1 môn Công nghệ 7
Tin học 7
Tin học 7 Kết Nối Tri Thức
Tin học 7 Chân Trời Sáng Tạo
Tin học 7 Cánh Diều
Giải bài tập Tin học 7 KNTT
Giải bài tập Tin học 7 CTST
Giải bài tập Tin học 7 Cánh Diều
Trắc nghiệm Tin học 7
Đề thi giữa HK1 môn Tin học 7
Cộng đồng
Hỏi đáp lớp 7
Tư liệu lớp 7
Xem nhiều nhất tuần
Video Toán nâng cao lớp 7
Con chim chiền chiện - Huy Cận - Ngữ văn 7 Chân Trời Sáng Tạo
Tiếng gà trưa - Xuân Quỳnh - Ngữ văn 7 Cánh Diều
Quê hương - Tế Hanh - Ngữ văn 7 Kết Nối Tri Thức
Toán 7 CTST Bài 2: Các phép tính với số hữu tỉ
Toán 7 Cánh diều Bài tập cuối chương 1
Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Tia Pg Của 1 Góc
-
Tính Chất Tia Phân Giác Của Một Góc – Giải Mã Toán Hình Học 7
-
Lý Thuyết Tia Phân Giác Của Góc | SGK Toán Lớp 6
-
Lý Thuyết: Tính Chất Tia Phân Giác Của Một Góc
-
Tính Chất Tia Phân Giác Của Một Góc - Chuyên đề Toán Học Lớp 7
-
Tia Phân Giác Là Gì - HTTL
-
Tính Chất Tia Phân Giác Của 1 Góc - Toán Lớp 7 - Itoan
-
Lý Thuyết Tính Chất Tia Phân Giác Của Một Góc Hay, Chi Tiết | Toán Lớp 7
-
Tia Phân Giác Của Một Góc Là Gì? Bài Tập Vận Dụng
-
Khái Niệm Tia Phân Giác, đường Phân Giác Của Góc - Hình Học 6
-
Lý Thuyết Bài 6: Tia Phân Giác Của Góc - Chương II Hình Học 6 Tập 2
-
Giải Toán 7 Bài 5. Tính Chất Tia Phân Giác Của Một Góc
-
Tính Chất Tia Pg Của 1 Góc
-
Hình Học 7 Tính Chất Tia Phân Giác Của Một Góc Chi Tiết Nhất
-
Đường Phân Giác – Wikipedia Tiếng Việt