Họ Nguyên Hàm Của Hàm Số \(f\left( X \right) = {e^{2x}} + {x^2}\) Là
Có thể bạn quan tâm
- Câu hỏi:
Họ nguyên hàm của hàm số \(f\left( x \right) = {e^{2x}} + {x^2}\) là
- A. \(F\left( x \right) = \frac{{{e^{2x}}}}{2} + \frac{{{x^3}}}{3} + C\)
- B. \(F\left( x \right) = {e^{2x}} + {x^3} + C\)
- C. \(F\left( x \right) = 2{e^{2x}} + 2x + C\)
- D. \(F\left( x \right) = {e^{2x}} + \frac{{{x^3}}}{3} + C\)
Lời giải tham khảo:
Đáp án đúng: A
\(F\left( x \right) = \int {\left( {{e^{2x}} + {x^2}} \right)dx = \frac{{{e^{2x}}}}{2} + \frac{{{x^3}}}{3} + C} \)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 65719
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG năm 2019 môn Toán Trường THPT Chuyên Quang Trung - Bình Phước lần 3
50 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng
- Cho hàm số có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
- Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây? \(y = {x^3} - 3x + 1\)
- Cho hàm số \(y=f(x)\) liên tục trên [-1;3] và có đồ thị như hình vẽ.
- Với a, b là hai số thực dương tùy ý. Khi đó \(\left( {\frac{{a{b^2}}}{{a + 1}}} \right)\) bằng
- Tìm tập nghiệm của phương trình \({\log _3}\left( {2{x^2} + x + 3} \right) = 1\).
- Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
- Cho \(\int\limits_1^2 {f\left( x \right)dx} = 2\) và \(\int\limits_1^2 {2g\left( x \right)dx} = 8\).
- Họ nguyên hàm của hàm số \(f\left( x \right) = {e^{2x}} + {x^2}\) là
- Trong không gian Oxyz cho hai điểm A(2;3;4) và B(3;0;1). Khi đó độ dài vectơ \(\overrightarrow {AB} \) là
- Trong không gian Oxyz, mặt phẳng (Oxy) có phương trình là
- Trong không gian Oxyz, đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{z}{3}\) đi qua điểm nào dưới đây
- Thể tích của khối hình hộp chữ nhật có các cạnh lần lượt là a, 2a, 3a bằng
- Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển nhị thức \({\left( {a + 2b} \right)^5}\).
- Tập xác định của hàm số \(y = \log \left( {{x^2} - 1} \right)\) là
- Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng 60°. Thể tích của khối nón đã cho là
- Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(3;2;1). Phương trình mặt cầu đường kính AB là
- Tập nghiệm của bất phương trình \({\left( {\frac{1}{3}} \right)^{{x^2} + 2x}} > \frac{1}{{27}}\) là
- Đạo hàm của hàm số \(y = x.{e^{x + 1}}\) là
- Đặt \({\log _5}3 = a\), khi đó \({\log _{81}}75\) bằng
- Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng a.
- Cho hàm số \(f(x)\) có đạo hàm \(f\left( x \right) = {x^{2019}}{\left( {x - 1} \right)^2}{\left( {x + 1} \right)^3}\).
- Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là
- Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + \left( {2m - 1} \right)x + 2019\) đ�
- Hàm số \(y = {\log _3}\left( {{x^3} - x} \right)\) có đạo hàm là
- Một người gửi tiết kiệm ngân hàng với lãi suất 0,5% mỗi tháng theo cách sau: mỗi tháng (vào đầu tháng) người đó g�
- Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là
- Cho \(\int\limits_0^1 {\frac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}} = a + b\ln 2 + c\ln 3\) với a, b, c là các số hữu tỉ.
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + 2y + 2z - 10 = 0\).
- Người ta đổ một cái cống bằng cát, đá, xi măng và sắt thép như hình vẽ bên dưới.
- Cho cấp số nhân \((u_n)\) có số hạng đầu \(u_1=2\) và công bội q = 5. Giá trị của \(\sqrt {{u_6}{u_8}} \) bằng
- Cho hình hộp chữ nhật ABCD.ABCD có \(BC = a,BB = a\sqrt 3 \). Góc giữa hai mặt phẳng (ABC) và (ABCD) bằng
- Tất cả các giá trị thực của tham số m để hàm số \(y = \frac{{{x^5}}}{5} - \frac{{m{x^4}}}{4} + 2\) đạt cực đại tại
- Cho hàm số \(y=f(x)\) liên tục trên R và có đồ thị như hình vẽTập hợp tất cả các giá trị thực của m để phươ
- Tìm tất cả các giá trị thực của m để bất phương trình \(\left( {{x^2} - 1} \right)\left( {x - 1} \right){x^3} + {\left( {{x^2} -
- Tìm tất cả các giá trị thực của tham số m để bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{
- Cho hàm số \(f\left( x \right) = - {x^2} + 3\) và hàm số \(g\left( x \right) = {x^2} - 2x - 1\) có đồ thị như hình vẽ
- Tìm tất cả các giá trị thực của tham số m để phương trình \({{4^x} - m{{.
- Kết quả của phép tính \(\int {\frac{{dx}}{{{e^x} - 2.{e^{ - x}} + 1}}dx} \) bằng
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y + z - 3 = 0\) và đường thẳng \(d:\frac{x}{1} = \frac{{y + 1}}{2} = \fra
- Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Biết góc \(\widehat {BAC} = 30^\circ \), SA = a và BA = BC = a.
- Cho hình hộp ABCD.A'B'C'D' có thể tích V, gọi M, N là hai điểm thỏa mãn \(\overrightarrow {D'M} = 2\overrightarrow {MD} , \overrightarrow {C'N} = 2\overrightarrow {NC} \) , đường thẳng AM cắt đường thẳng A'D' tại P, đường thẳng BN cắt đường thẳng B'C' tại Q. Thể tích của khối PQNMD'C' bằng
- Thể tích lớn nhất của khối trụ nội tiếp hình cầu có bán kính R bằng
- Tất cả các giá trị thực của m để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là
- Trong không gian Oxyz, cho \(A\left( {1;0;0} \right),B\left( {0;2;0} \right),C\left( {0;0;1} \right)\).
- Cho hàm số \(y=f(x)\).Hàm số \(y=f'(x)\) có đồ thị như hình vẽ Bất phương trình \(\frac{{f\left( x \right)}}{{36}} + \frac{{\sqrt {x + 3} - 2}}{{x - 1}} > m\) đúng với mọi \(x \in \left( {0;1} \right)\) khi và chỉ khi
- Cho hàm số \(f(x)\) có đồ thị của hàm số \(y=f(x)\) như hình vẽHàm số \(y = f\left( {2x - 1} \right) + \frac{{{x^3}}}{3} + {x
- Trong không gian Oxyz, cho A(0;1;2), B(0;1;0), C(3;1;1) và mặt phẳng \(\left( Q \right):x + y + z - 5 = 0\).
- Trong không gian Oxyz, cho hai đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{1} = \frac{{z - 1}}{1}\) và \(\Delta :\frac{{x - 1}}{1} = \fr
- Có 5 bạn học sinh nam và 5 bạn học sinh nữ trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng.
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 3 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG môn Văn
Người lái đò sông Đà
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Ai đã đặt tên cho dòng sông
Tây Tiến
Quá trình văn học và phong cách văn học
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Nguyên Hàm Của X^2.e^2x
-
Tìm Đạo Hàm Tích Phân Của X^2e^(2x) đối Với X | Mathway
-
Tìm Nguyên Hàm 2xe^(-x^2) | Mathway
-
Nguyên Hàm Của Hàm Số F(x) = X.e^2x
-
[LỜI GIẢI] Họ Nguyên Hàm Của Hàm Số F( X ) = Xe^2x Là - Tự Học 365
-
Họ Nguyên Hàm Của Hàm Số F(x)=e^2x+x^2 Là
-
Họ Nguyên Hàm Của Hàm Số F(x)=x.e^2x Là | Hỏi Đáp Toán Học
-
Tìm Nguyên Hàm Của Hàm Số F(x)=e^(2x) - Hoc247
-
Cho F(x)=(x^2+2x)e^x Là Một Nguyên Hàm...
-
Họ Nguyên Hàm Của Hàm Số $f\left( X \right) = {e^{2x}} + {x^2}$ Là
-
Nguyên Hàm Của Hàm Số Y= E^(-2x+1) Là Tích Phân E - Vietjack.online
-
Họ Nguyên Hàm Của Hàm Số F(x)=e2x+x2 Là
-
Cho F( X ) = (x^2) Là Nguyên Hàm Của Hàm Số F( X )(e^(2x)) Và F(
-
3.892 Lượt Xem - Lazi