If G Is Twice Differentiable Function And F(x)=xg(x^2), How Do You Find F ...
Có thể bạn quan tâm
1 Answer
Steve M Nov 3, 2016# f''(x) = 4x^3g''(x^2) + 6xg'(x^2)#
Explanation:
First we need to use the product rule, as follows:
Differentiating Once: # f(x)=xg(x^2) # # :. f'(x)=(x)(d/dxg(x^2)) + (d/dxx)(g(x^2))# # :. f'(x)=x(d/dxg(x^2)) + (1)(g(x^2))# # :. f'(x)=x(d/dxg(x^2)) + g(x^2)#
Then By the chain rule, we have: # d/dxg(x^2) = g'(x^2)(d/dxx^2) # # d/dxg(x^2) = g'(x^2)(2x) # # :. d/dxg(x^2) = 2xg'(x^2) # .... [1]
Substituting [1] gives us: # :. f'(x)=x(2xg'(x^2)) + g(x^2)# # :. f'(x)=2x^2g'(x^2) + g(x^2)#
Differentiating a second time, (again using the product rule): # f''(x) = (2x^2)(d/dxg'(x^2)) + (d/dx2x^2)(g'(x^2)) + (d/dxg(x^2))#
Again, Substituting [1] gives us: # f''(x) = (2x^2)(d/dxg'(x^2)) + (4x)(g'(x^2)) + (2xg'(x^2))# # f''(x) = 2x^2(d/dxg'(x^2)) + 6xg'(x^2)#
And, again by the chain rule, we have: # d/dxg'(x^2) = (g''(x^2))(d/dxx^2) # # :. d/dxg'(x^2) = (g''(x^2))(2x) # # :. d/dxg'(x^2) = 2xg''(x^2) # .... [2]
Substituting [2] gives us: # f''(x) = 2x^2(2xg''(x^2)) + 6xg'(x^2)# # f''(x) = 4x^3g''(x^2) + 6xg'(x^2)#
Answer linkRelated questions
See all questions in Chain RuleImpact of this question
25468 views around the world You can reuse this answer Creative Commons LicenseTừ khóa » F(x)=x^2+xg'(1)+g''(2)
-
Let F(x) = X^2 + Xg'(1) + G\"(2) And G(x) = X^2 + Xf'(2) + F\"(3) . Then
-
Let F(x)=x^2+xg^2(1)+g^''(2) And G(x)=f(1).x^2+xf'(x)+f''(x ... - Doubtnut
-
Let F (x) = X^2 + Xg' (1) + G'' (2) And G (x) = X^2 + X F' (2) + F'' (3), Then
-
Find F(g(x)) F(x)=2x^2-x G(x)=x^-2 | Mathway
-
[PDF] The Algebra Of Functions - Alamo Colleges
-
Solved If G Is A Twice Differentiable Function And
-
Answers To Exercises
-
Rules Of Calculus - Functions Of One Variable
-
[PDF] Derivatives Of Composite Functions The Chain Rule ( G(h(x)) ) = G (h ...
-
[PDF] MATH 10550, EXAM 1 SOLUTIONS 1. If F(2) = 5, F(3) = 2, F(4) = 5, G(2 ...
-
Composing Functions (article) - Khan Academy
-
F(x)=x 2 +xg'(1)+g''(2) And G(x)=f(1)x 2 +xf'(x)+f'(x) Then The Value Of F(3)
-
Operations On Functions - Purplemath