Let F(x) = X^2 + Xg'(1) + G\"(2) And G(x) = X^2 + Xf'(2) + F\"(3) . Then
Có thể bạn quan tâm
SolveGuidesJoin / LoginUse appLogin0You visited us 0 times! Enjoying our articles? Unlock Full Access!Standard XIIMathematicsHigher Order DerivativesQuestionLet f(x)=x2+xg′(1)+g′′(2) and g(x)=x2+xf′(2)+f′′(3). Then
- f′(1)=4+f′(2)
- g′(2)=8+g′(1)
- g′′(2)+f′′(3)=4
- all of these
f(x)=x2+xg′(1)+g′′(2)g(x)=x2+xf′(2)+f′′(3)Differentiating both the equations, we getf′(x)=2x+g′(1) and g′(x)=2x+f′(2)..............(1)Putting x=1 in eqn (1), we getf′(1)=2+g′(1) and g′(1)=2+f′(2)Then, f′(1)=4+f′(2)Putting x=2 in eqn (1), we getf′(2)=4+g′(1) and g′(2)=4+f′(2)g′(2)=4+4+g′(1)Then, g′(2)=8+g′(1)Differentiate eqn (1) w.r.t.x, we get,f′′(x)=2 and g′′(x)=2 for all xf′′(3)=2 and g′′(2)=2g′′(2)+f′′(3)=2+2=4
Was this answer helpful?8Similar QuestionsQ1Let f(x)=x2+xg′(1)+g′′(2) and g(x)=x2+xf′(2)+f′′(3). ThenView SolutionQ2Let f(x)=x2+xg′(1)+g′′(2) and g(x)=x2+xf′(2)+f′′(3) then which of the following option/s is/are correct?View SolutionQ3Let f(x)=x2+xg′(1)+g′′(2) and g(x)=f(1).x2+xf′(x)+f′′(x) thenView SolutionQ4Let f,g,h are functions defined by f(x)=x−1,g(x)=x2−2 and h(x)=x3−3, show that (f∘g)∘h=f∘(g∘h).View SolutionQ5Let f(x)=ax2+bx+c,g(x)=px2+qx+r such that f(1)=g(1),f(2)=g(2) and f(3)−g(3)=2. Then, f(4)−g(4) isView SolutionTừ khóa » F(x)=x^2+xg'(1)+g''(2)
-
Let F(x)=x^2+xg^2(1)+g^''(2) And G(x)=f(1).x^2+xf'(x)+f''(x ... - Doubtnut
-
Let F (x) = X^2 + Xg' (1) + G'' (2) And G (x) = X^2 + X F' (2) + F'' (3), Then
-
Find F(g(x)) F(x)=2x^2-x G(x)=x^-2 | Mathway
-
[PDF] The Algebra Of Functions - Alamo Colleges
-
Solved If G Is A Twice Differentiable Function And
-
Answers To Exercises
-
Rules Of Calculus - Functions Of One Variable
-
[PDF] Derivatives Of Composite Functions The Chain Rule ( G(h(x)) ) = G (h ...
-
If G Is Twice Differentiable Function And F(x)=xg(x^2), How Do You Find F ...
-
[PDF] MATH 10550, EXAM 1 SOLUTIONS 1. If F(2) = 5, F(3) = 2, F(4) = 5, G(2 ...
-
Composing Functions (article) - Khan Academy
-
F(x)=x 2 +xg'(1)+g''(2) And G(x)=f(1)x 2 +xf'(x)+f'(x) Then The Value Of F(3)
-
Operations On Functions - Purplemath