Không Gian Nghiệm Của Hệ Phương Trình Tuyến Tính Thuần Nhất

  1. Trang chủ >
  2. Giáo án - Bài giảng >
  3. Cao đẳng - Đại học >
Không gian nghiệm của hệ phương trình tuyến tính thuần nhất

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (6.5 MB, 683 trang )

Cơ sở và số chiều của không gian véctơ conVí dụGiải hệ x12x 1x11 22 41 2Ví dụtìm nghiệm của không gian nghiệm+ 2x2 − x3 + x4 = 0+ 4x2 − 3x3= 0+ 2x2 + x3 + 5x4 = 0h2 →h2 −2h11 2 −1 1−1 1h →h −h1 0 0 −1 −2 −3 0  −−3−−3−−→0 0 2 41 5TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ22CON/ 53 Cơ sở và số chiều của không gian véctơ conVí dụ1 2 −1 1h3 →h3 +2h2−−−−−−→  0 0 −1 −2  ⇒ x1, x3 là biến cơ0 0 0 0sở,, x4 là biến tự do.Đặt x2 = α,x4 =β x2x1−2α − 3β−2−3 x2  α = α 1 +β 0 = 0  −2  x3  −2βx4β01Vậy X1 = (−2, 1, 0, 0)T và X2 = (−3, 0, −2, 1)T là cơ sởcủa không gian nghiệm. Số chiều của không gian nghiệmcủa hệ này là 2.TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ23CON/ 53 Cơ sở và số chiều của không gian véctơ conCơ sở và số chiều của bao tuyến tínhSố chiều của bao tuyến tính < M > và hạng của hệ véctơĐịnh lýGiả sử M = {x1, x2, . . . , xp } ⊂ E có hạng r vàW =< M > là không gian véctơ con sinh bởi M.Khi đó dim(W ) = r .Chứng minh.Giả sử Mr = {xi1 , xi2 , . . . xir } là 1 tập con độclập tuyến tính tối đại của M.Chứng minh Mr sinh ra W .TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ24CON/ 53 Cơ sở và số chiều của không gian véctơ conCơ sở và số chiều của bao tuyến tínhVì Mr độc lập tuyến tính tối đại nên mỗi véctơthuộc M đều là tổ hợp tuyến tính của các véctơcủa Mr ⇒ mọi véctơ của W là tổ hợp tuyến tínhcủa các véctơ của M thì cũng là tổ hợp tuyến tínhcủa các véctơ của Mr . Có nghĩa làW =< M >⇒ W =< Mr > .Mr độc lập tuyến tính.Mr là tập sinh của W .⇒ Mr là cơ sở của W⇒ dim(W ) = r = rank(M).TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ25CON/ 53 Cơ sở và số chiều của không gian véctơ conCơ sở và số chiều của bao tuyến tínhTìm cơ sở và số chiều của không gian con M của kgv Esinh bởi m véctơ x1 , x2 , . . . , xm : M =< x1 , x2 , . . . , xm >123Lấy một cơ sở B = {e1, e2, . . . , en } bất kỳ củaE . Tìm [x1]B , [x2]B , . . . , [xm ]BXét không gian hàng của ma trậnA = ([x1]B , [x2]B , . . . , [xm ]B )TBiến đổi A về dạng bậc thang từ đó xác địnhr (A) và cơ sở của M, số chiều của M bằngr (A).TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ26CON/ 53 Cơ sở và số chiều của không gian véctơ conVí dụVí dụTrong R−kgv P2(x) cho p1(x) =x 2 + 2x + 1, p2(x) = 2x 2 + x − 1, p3(x) = 4x + 4.Tìm cơ sở và số chiều của không gian con sinh bởi3 véctơ trên.Xét cơ sở chính tắc x 2,x, 11trận các cột A là A =  20TS. Lê Xuân Đại (BK TPHCM)của P2(x), vậy ma2 11 −1 4 4KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ27CON/ 53 Cơ sở và số chiều của không gian véctơ conVí dụ1 2 1h3 →h3 −4/3h2h2 →h2 −2h1A −−−−−−→  0 −3 −3  −−−−−−−→0 4 41 2 1 0 −3 −3  = B. Ma trận B có hàng 1 và0 0 0hàng 2 độc lập tuyến tính và là cơ sở của khônggian con sinh bởi 3 véctơ p1(x), p2(x), p3(x). Vậyp1(x), p2(x) là cơ sở và số chiều của không giancon sinh bởi 3 véctơ trên là 2.TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ28CON/ 53 Cơ sở và số chiều của không gian véctơ conHạng của ma trận phụ hợpHạng của ma trận phụ hợpĐịnh lýCho A ∈ Mn (K ). Khi đóNếu r (A) = n thì r (PA) = nNếu r (A) = n − 1 thì r (PA) = 1Nếu r (A) < n − 1 thì r (PA) = 0.1231. r (A) = n ⇒ det(A) = 0. det(PA) =(det(A))n−1 ⇒ det(PA) = 0 ⇒ r (PA) = n.3. r (A) < n − 1 ⇒ mọi định thức con cấp n − 1đều bằng 0 ⇒ PA = 0 ⇒ r (PA) = 0TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ29CON/ 53 Cơ sở và số chiều của không gian véctơ conHạng của ma trận phụ hợp2. Ta có A.PA = det(A). Nếu r (A) = n − 1 thìdet(A) = 0. Do đó A.PA = 0, từ đó suy ra các véctơ cột của ma trận PA là nghiệm của hệ phươngtrình AX = 0. Suy ra rank(PA) = hạng các véc tơcột của ma trận PA nhỏ hơn hoặc bằng số chiềucủa không gian nghiệm của hệ thuần nhấtAX = 0 ⇒ r (PA) n − r (A) = 1. Mặt khác, dor (A) = n − 1 nên A có ít nhất 1 định thức concấp n − 1 khác không hay PA = 0. Suy rar (PA) 1. Vậy r (PA) = 1TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ30CON/ 53 Tổng và giao các không gian conĐịnh nghĩaĐịnh lýGiả sử E là một K -kgv; (Fi )i∈I là một họ cáckhông gian véctơ con của E , thế thì giao Fi lài∈Imột không gian véctơ con của E .Chứng minh. Đặt F =Fii∈I123F = ∅ vì ∀i ∈ I , 0 ∈ Fi ⇒ 0 ∈ F .∀x, y ∈ F ⇒ ∀i ∈ I , x, y ∈ Fi ⇒ x + y ∈ Fi⇒x +y ∈F∀i ∈ I , x ∈ Fi ⇒ ∀λ ∈ K , λx ∈ Fi ⇒ λx ∈ F .TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ31CON/ 53 Tổng và giao các không gian conĐịnh nghĩaĐịnh nghĩaGiả sử E là một K −kgv, F1, F2 là 2 không gianvéctơ con của E . Ta ký hiệu F = F1 + F2 == {x ∈ E , ∃(x1, x2) ∈ F1 × F2, x = x1 + x2} đượcgọi là tổng của F1 và F2.Định lýTổng F = F1 + F2 là một không gian véctơ concủa E .TS. Lê Xuân Đại (BK TPHCM)KHÔNG GIAN VÉCTƠ CON. TỔNG VÀ GIAO CỦA CÁCTP.KHÔNGHCM —GIAN2013.VÉCTƠ32CON/ 53

Xem Thêm

Tài liệu liên quan

  • Bài Giảng Slide Bài Giảng Môn Đại Số Tuyến Tính Của Tác Giả Lê Xuân ĐạiBài Giảng Slide Bài Giảng Môn Đại Số Tuyến Tính Của Tác Giả Lê Xuân Đại
    • 683
    • 4,348
    • 69
  • Tài liệu KIỂM ĐỊNH CÁC GIẢ THUYẾT THỐNG KÊ VỀ CÁC HỆ SỐ HỒI QUI doc Tài liệu KIỂM ĐỊNH CÁC GIẢ THUYẾT THỐNG KÊ VỀ CÁC HỆ SỐ HỒI QUI doc
    • 120
    • 755
    • 6
  • Tài liệu Một số bài tập lập trình C căn bản pdf Tài liệu Một số bài tập lập trình C căn bản pdf
    • 6
    • 1
    • 27
  • Tài liệu Tư tưởng then chốt, quan trọng nhất của Hồ Chí Minh ppt Tài liệu Tư tưởng then chốt, quan trọng nhất của Hồ Chí Minh ppt
    • 6
    • 439
    • 0
Tải bản đầy đủ (.pdf) (683 trang)

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

(6.5 MB) - Bài Giảng Slide Bài Giảng Môn Đại Số Tuyến Tính Của Tác Giả Lê Xuân Đại-683 (trang) Tải bản đầy đủ ngay ×

Từ khóa » định Nghĩa Hệ Phương Trình Tuyến Tính Thuần Nhất