L11 Bài Toán Về Số Nghiệm Của Phương Trình - Tài Liệu Text - 123doc
Có thể bạn quan tâm
- Trang chủ >>
- Lớp 11 >>
- Toán học
Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (103.23 KB, 5 trang )
Bài toán về số nghiệm của phương trìnhCâu 1. Chứng minh rằng phương trình x 5 − 3 x 4 + 5 x − 2 = 0 có ít nhất ba nghiệm phânbiệt trong khoảng (–2; 5).Xét hàm số f ( x ) = x 5 − 3 x 4 + 5x − 2 ⇒ f liên tục trên R.Ta có: f (0) = −2, f (1) = 1, f (2) = −8, f (4) = 16⇒ f (0). f (1) < 0 ⇒ PT f(x) = 0 có ít nhất 1 nghiệm c1 ∈ (0;1)f (1). f (2) < 0 ⇒ PT f(x) = 0 có ít nhất 1 nghiệm c2 ∈ (1;2)f (2). f (4) < 0 ⇒ PT f(x) = 0 có ít nhất 1 nghiệm c3 ∈ (2; 4)⇒ PT f(x) = 0 có ít nhất 3 nghiệm trong khoảng (–2; 5).Câu 2. Chứng minh rằng phương trình sau có ít nhất một nghiệm trên [0; 1]:x 3 + 5x − 3 = 0 .Xét hàm số f ( x ) = x 3 + 5x − 3 ⇒ f ( x ) liên tục trên R.f (0) = −3, f (1) = 3 ⇒ f (0). f (1) < 0 ⇒ PT đã cho có ít nhất một nghiệm thuộc khoảng(0;1) .Câu 3. Chứng minh rằng phương trình sau có it nhất một nghiệm âm: x 3 + 1000 x + 0,1 = 0Xét hàm số f ( x ) = x 3 + 1000 x + 0,1 ⇒ f liên tục trên R.f (0) = 0,1 > 0⇒ f (−1). f (0) < 0 ⇒ PT f ( x ) = 0 có ít nhất một nghiệmf (−1) = −1001 + 0,1 < 0 c ∈ (−1; 0)Câu 4. Chứng minh phương trình sau có 3 nghiệm phân biệt:6 x 3 − 3x 2 − 6 x + 2 = 0 .Xét hàm số f ( x ) = 6 x 3 − 3 x 2 − 6 x + 2 ⇒ f ( x ) liên tục trên R.• f (−1) = −1, f (0) = 2 ⇒ f (−1). f (0) < 0 ⇒ PT f ( x ) = 0 có ít nhất một nghiệm c1 ∈ (−1; 0)• f (0) = 2, f (1) = −1 ⇒ f (0). f (1) < 0 ⇒ PT f ( x ) = 0 có ít nhất một nghiệm c2 ∈ (0;1)• f (1) = −1, f (2) = 26 ⇒ f (1). f (2) < 0 ⇒ PT f ( x ) = 0 có một nghiệm c3 ∈ (1;2)• Vì c1 ≠ c2 ≠ c3 và PT f ( x ) = 0 là phương trình bậc ba nên phương trình có đúng banghiệm thực.Toán Tuyển Sinh Groupwww.facebook.com/groups/toantuyensinhCâu 5. Chứng minh rằng phương trình sau có ít nhất 1 nghiệm:5x 5 − 3x 4 + 4 x3 − 5 = 0Với PT: 5 x 5 − 3 x 4 + 4 x 3 − 5 = 0 , đặt f ( x ) = 5 x 5 − 3 x 4 + 4 x 3 − 5f(0) = –5, f(1) = 1 ⇒ f(0).f(1) < 0⇒ Phuơng trình đã cho có ít nhất một nghiệm thuộc (0; 1)Câu 6. Chứng minh rằng phương trình sau có ít nhất 2 nghiệm: 2 x 3 − 10 x − 7 = 0Xét hàm số: f(x) = 2 x 3 − 10 x − 7 ⇒ f(x) liên tục trên R.• f(–1) = 1, f(0) = –7 ⇒ f ( −1) . f ( 0 ) < 0 nên phương trình có ít nhất một nghiệm thuộcc1 ∈ ( −1;0 )• f(0) = –7, f(3) = 17 ⇒ f(0).f(3) < 0 ⇒ phương trình có nghiệm c2 ∈ ( 0;3)• c1 ≠ c2 nên phương trình đã cho có ít nhất hai nghiệm thực.Câu 7. Chứng minh rằng phương trình sau có ít nhất hai nghiệm : 2 x 3 − 5x 2 + x + 1 = 0 .Xét hàm số: f ( x ) = 2 x 3 − 5 x 2 + x + 1 ⇒ Hàm số f liên tục trên R.Ta có:+f (0) = 1 > 0 ⇒ PT f(x) = 0 có ít nhất một nghiệm c1 ∈ (0;1) .f (1) = −1 +f (2) = −1 < 0 ⇒ PT f(x) = 0 có ít nhất một nghiệm c2 ∈ (2;3) .f (3) = 13 > 0 Mà c1 ≠ c2 nên PT f(x) = 0 có ít nhất 2 nghiệm.Câu 8. Chứng minh rằng phương trình: (1 − m2 ) x 5 − 3 x − 1 = 0 luôn có nghiệm với mọi m.Xét hàm số f ( x ) = (1 − m 2 ) x 5 − 3 x − 1 ⇒ f(x) liên tục trên R.Ta có: f (−1) = m 2 + 1 > 0, ∀ m; f (0) = −1 < 0, ∀ m ⇒ f (0). f (1) < 0, ∀m⇒ Phương trình có ít nhất một nghiệm c ∈ (0;1) , ∀mCâu 9. Chứng minh rằng phương trình sau có nghiệm: x 5 − x 2 − 2 x − 1 = 0Đặt f ( x ) = x 5 − x 2 − 2 x − 1 ⇒ f ( x ) liên tục trên R.Toán Tuyển Sinh Groupwww.facebook.com/groups/toantuyensinhf(0) = –1, f(2) = 23 ⇒ f(0).f(1) < 0⇒ f ( x ) = 0 có ít nhất 1 nghiệm thuộc (0; 1)Câu 10. Chứng minh rằng phương trình x 4 + x 3 − 3 x 2 + x + 1 = 0 có nghiệm thuộc (−1;1) .Xét hàm số f ( x ) = x 4 + x 3 − 3 x 2 + x + 1 ⇒ f ( x ) liên tục trên R.• f (−1) = −3, f (1) = 1 ⇒ f (−1). f (1) < 0 nên PT f ( x ) = 0 có ít nhất một nghiệm thuộc(–1; 1).Câu 11. Chứng minh rằng phương trình sau có ít nhất một nghiệm:cos2 x − x = 0 πĐặt f(x) = cos2 x − x ⇒ f(x) liên tục trên (0; +∞) ⇒ f(x) liên tục trên 0; 2π π πf (0) = 1, f ÷ = −⇒ f (0). f ÷ < 0222 πVậy phương trình có ít nhất một nghiệm trên 0; ÷ 2Câu 12. Chứng minh rằng phương trình x 5 − 3 x − 1 = 0 có ít nhất hai nghiệm phân biệt thuộc (–1; 2).Gọi f ( x ) = x 5 − 3 x − 1 ⇒ f ( x ) liên tục trên Rf(0) = –1, f(2) = 25 ⇒ f (0). f (2) < 0 nên PT có ít nhất một nghiệm c1 ∈ ( 0;2 )f(–1) = 1, f(0) = –1 ⇒ f(–1).f(0) < 0 nên PT có ít nhất một nghiệm c2 ∈ (−1; 0)c1 ≠ c2 ⇒ PT có ít nhất hai nghiệm thực thuộc khoảng (–1; 2)Câu 13. Chứng minh rằng phương trình : x 5 − 3 x = 1 có ít nhất một nghiệm thuộc (1; 2).Gọi f ( x ) = x 5 − 3 x − 1 liên tục trên Rf (−1) = 1, f (0) = −1 ⇒ f (−1). f (0) < 0⇒ phương trình dã cho có ít nhất một nghiệm thuộc (–1; 0)Câu 14. Chứng minh rằng phương trình 3 x 4 − 2 x 3 + x 2 − 1 = 0 có ít nhất hai nghiệm thuộckhoảng (–1; 1).Gọi f ( x ) = 3 x 4 − 2 x 3 + x 2 − 1 ⇒ f ( x ) liên tục trên RToán Tuyển Sinh Groupwww.facebook.com/groups/toantuyensinhf(–1) = 5, f(0) = –1 ⇒ f(–1).f(0) < 0 ⇒ f ( x ) = 0 có ít nhất 1 nghiệm c1 ∈ (−1; 0)f0) = –1, f(1) = 1 ⇒ f (0). f (1) < 0 ⇒ f ( x ) = 0 có ít nhất 1 nghiệm c2 ∈ (0;1)c1 ≠ c2 ⇒ phương trình có ít nhất hai nghiệm thuộc khoảng ( –1; 1)Câu 15. Chứng minh phương trình: 2 x 4 + 4 x 2 + x − 3 = 0 có ít nhất hai nghiệm thuộc (–1; 1).Gọi f ( x ) = 2 x 4 + 4 x 2 + x − 3 ⇒ f ( x ) liên tục trên Rf(–1) = 2, f(0) = –3 ⇒ f(–1).f(0) < 0 ⇒ PT f ( x ) = 0 có ít nhất 1 nghiệm c1 ∈ (−1; 0)f(0) = –3, f(1) = 4 ⇒ f (0). f (1) < 0 ⇒ PT f ( x ) = 0 có ít nhất 1 nghiệm c2 ∈ (0;1)Mà c1 ≠ c2 ⇒ PT f ( x ) = 0 có ít nhát hai nghiệm thuộc khoảng (−1;1) .Câu 16. Chứng minh rằng phương trình sau luôn có nghiệm với mọi m:(9 − 5m) x 5 + (m 2 − 1) x 4 − 1 = 0Gọi f ( x ) = (9 − 5m) x 5 + (m 2 − 1) x 4 − 1 ⇒ f ( x ) liên tục trên R.25 3f (0) = −1, f (1) = m − ÷ + ⇒ f (0). f (1) < 02 4⇒ Phương trình có ít nhất một nghiệm thuộc khoảng (0; 1) với mọi mCâu 17. Chứng minh rằng phương trình sau luôn có nghiệm với mọi m:m( x − 1)3 ( x + 2) + 2 x + 3 = 0Gọi f ( x ) = m( x − 1)3 ( x + 2) + 2 x + 3 ⇒ f ( x ) liên tục trên Rf(1) = 5, f(–2) = –1 ⇒ f(–2).f(1) < 0⇒ PT f ( x ) = 0 có ít nhất một nghiệm c ∈ (−2;1), ∀m ∈ RCâu 18. Chứng minh rằng phương trình x 3 − 2mx 2 − x + m = 0 luôn có nghiệm với mọi m.Xét hàm số f ( x ) = x 3 − 2mx 2 − x + m ⇒ f(x) liên tục trên R.• f (m) = −m3 , f (0) = m ⇒ f (0). f (m) = − m 4• Nếu m = 0 thì phuơng trình có nghiệm x = 0• Nếu m ≠ 0 thì f (0). f (m) < 0, ∀m ≠ 0 ⇒ phương trình luôn có ít nhát một nghiệm thuộc (0;m) hoặc (m; 0).Vậy phương trình x 3 − 2mx 2 − x + m = 0 luôn có nghiệm.Toán Tuyển Sinh Groupwww.facebook.com/groups/toantuyensinhCâu 20. Chứng minh phương trình x 3 − 3 x + 1 = 0 có 3 nghiệm phân biệt .Xét hàm số f ( x ) = x 3 − 3 x + 1 ⇒ f(x) liên tục trên R.• f(–2) = –1, f(0) = 1 ⇒ phuơng trình f(x) = 0 có ít nhất một nghiệm c1 ∈ ( −2; 0 )• f(0) = 1, f(1) = –1 ⇒ phương trình f(x) = 0 có ít nhất một nghiệm c2 ∈ ( 0;1)• f(1) = –1, f(2) = 3 ⇒ phương trình f(x) = 0 có ít nhất một nghiệm c3 ∈ ( 1;2 )• Phương trình đã cho là phương trình bậc ba, mà c1 , c2 , c3 phân biệt nên phươngtrình đã cho có đúng ba nghiệm thực.Câu 21. Cho y = f ( x ) = x 3 − 3 x 2 + 2 . Chứng minh rằng phương trình f(x) = 0 có 3 nghiệmphân biệt.Xét hàm số y = f ( x ) = x 3 − 3 x 2 + 2 ⇒ f(x) liên tục trên R.• f(–1) = –2, f(0) =2 ⇒ f(–1).f(0) < 0 ⇒ phương trình f(x) = 0 có nghiệmc1 ∈ ( −1; 0 )• f(1) = 0 ⇒ phương trình f(x) = 0 có nghiệm x = 1 ≠ c1• f(2) = –2, f(3) = 2 ⇒ f ( 2 ) . f ( 3) < 0 nên phương trình có một nghiệm c2 ∈ ( 2;3)Mà cả ba nghiệm c1 , c2 ,1 phân biệt nên phương trình đã cho có ba nghiệm thực phân biệtCâu 22. Chứng minh rằng phương trình x 3 + 3 x 2 − 4 x − 7 = 0 có ít nhất một nghiệm trongkhoảng (–4; 0).Xét hàm số f ( x ) = x 3 + 3 x 2 − 4 x − 7 ⇒ f ( x ) liên tục trên R.• f(–3) = 5, f(0) = –7 ⇒ f (−3). f (0) < 0 ⇒ PT f ( x ) = 0 có ít nhất một nghiệm thuộc (–3;0).• (−3; 0) ⊂ (−4; 0) ⇒ PT f ( x ) = 0 có ít nhất một nghiệm thuộc (–4; 0).Toán Tuyển Sinh Groupwww.facebook.com/groups/toantuyensinh
Tài liệu liên quan
- Các bài toán về số nghiệm của một số phương trình-Ôn thi vào 10(phần 3)
- 3
- 832
- 2
- BAI TOAN GIAO DIEM CUA HAI DO THI VA UNG DUNG BIEN LUAN SO NGHIEM CUA PHUONG TRINH
- 10
- 3
- 2
- bài giảng đại số 9 chương 4 bài 4 công thức nghiệm của phương trình bậc hai
- 12
- 582
- 0
- Biện luận số nghiệm của phương trình - Bài tập tự luyện Toán 12
- 1
- 684
- 2
- Biện luận số nghiệm của phương trình - Tài liệu tự luyện Toán 12
- 4
- 432
- 1
- NỘI DUNG 6 BIỆN LUẬN số NGHIỆM của PHƯƠNG TRÌNH BẰNG đồ THỊ
- 6
- 428
- 2
- L11 bài toán về số nghiệm của phương trình
- 5
- 2
- 19
- Giáo án Đại số 9 chương 4 bài 4: Công thức nghiệm của phương trình bậc hai
- 5
- 554
- 2
- Giáo án Đại số 9 chương 4 bài 4: Công thức nghiệm của phương trình bậc hai
- 4
- 785
- 4
- Giáo án Đại số 9 chương 4 bài 4: Công thức nghiệm của phương trình bậc hai
- 5
- 518
- 2
Tài liệu bạn tìm kiếm đã sẵn sàng tải về
(401.67 KB - 5 trang) - L11 bài toán về số nghiệm của phương trình Tải bản đầy đủ ngay ×Từ khóa » Cách Chứng Minh Phương Trình Luôn Có Nghiệm Lớp 11
-
Cách Chứng Minh Phương Trình Có Nghiệm Cực Hay, Chi Tiết
-
Cách Chứng Minh Phương Trình Luôn Có Nghiệm Hay Nhất - TopLoigiai
-
4.9 CHỨNG MINH PHƯƠNG TRÌNH CÓ NGHIỆM ml
-
Cách Chứng Minh Phương Trình Có Nghiệm Cực Hay, Chi Tiết
-
Chứng Minh Phương Trình Có Nghiệm
-
Hàm Số Liên Tục (Toán 11): Chứng Minh Phương Trình Có Nghiệm
-
Chứng Minh Phương Trình Có Nghiệm Dựa Vào Tính Liên Tục Của Hàm Số
-
Chứng Minh Phương Trình Có Nghiệm Bằng Tính Chất Hàm Số Liên Tục
-
Chứng Minh Rằng Phương Trình Luôn Có Nghiệm Với Mọi M Lớp 11
-
Bài 3.11 Trang 170 SBT Đại Số Và Giải Tích 11
-
Chứng Minh Phương Trình Luôn Có Một Nghiệm Dương - 123doc
-
Phương Trình Luôn Có Nghiệm Với Mọi M Lớp 11 - Hàng Hiệu