LÍ THUYẾT VỀ CON LẮC ĐƠN VÀ BÀI TẬP VẬN DỤNG

Hình ảnh có liên quan

TÓM TẮT LÝ THUYẾT VỀ CON LẮC ĐƠN

1. Cấu tạo

- Gồm một sợi dây không giãn có độ dài image001.gif, khối lượng không đáng kể, một đầu cố định, đầu còn lại được gắng vào một vật có khối lượng m. Con lắc dao động với biên độ góc nhỏ (α < 100).

- Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và α0 << 100 rad hay S0 << image001.gif

2. Phương trình dao động

Trong quá trình dao động con lắc đơn chịu tác dụng của các lực: trọng lực P, lực căng dây T. Các lực được phân tích như hình vẽ.image004.gif

Áp dụng định luật II Newton ta có:

image005.gif

Chiếu phương trình lên phương chuyển động ta được:

image006.gif với a = s"

Do góc α nhỏ nên ta sử dụng công thức gần đúng image009.gif

image010.gif

Đặt: image011.gif

Vậy con lắc đơn dao động vơi góc lệch nhỏ là một dao động điều hòa với tần số góc image012.gif(rad/s).

3. Chu kỳ và tần số của con lắc đơn

Ta có: image013.gif

* Chú ý : Cũng tương tự như con lắc lò xo, với con lắc đơn ta cũng có hệ thức liên hệ giữa li độ, biên độ, tốc độ và tần số góc như sau:

image014.gif

Trong đó: image015.gif là hệ thức liên hệ giữa độ dài cung và bán kính cung.

4. Tốc độ và lực căng dây của con lắc đơn

Khi xét đến tốc độ và lực căng dây của con lắc đơn thì chúng ta xét trong trường hợp góc lệch của con lắc có thể rất lớn mà không phải là nhỏ hơn 100. Lúc này con lắc đơn dao động là dao động tuần hoàn chứ không phải là dao động điều hòa nữa.

a. Tốc độ của con lắc đơn

Xét tại một vị trí bất kỳ (góc lệch α), áp dụng định luật bảo toàn năng lượng ta được:

image016.gif

b. Lực căng dây (TL)

Từ phương trình: image005.gif, chiếu vào phương của T ta được quỹ đạo là hình tròn, và gia tốc a đóng vai trò là gia tốc hướng tâm image017.gif. Ta được:

image018.gif

Vậy ta có công thức tính tốc độ và lực căng dây của con lắc đơn như sau:

image019.gif

* Nhận xét:

Khi con lắc đi qua vị trí cân bằng (α = 0) thì khi đó cả tốc độ và lực căng dây đều đạt giá trị lớn nhất:

image021.gif

Khi con lắc đi qua vị trí biên (α = α0) thì khi đó cả tốc độ và lực căng dây đều đạt giá trị nhỏ nhất:

image023.gif

5. Năng lượng của con lắc đơn

5.1 Động năng của con lắc đơn

Wđ = image024.gif

5.2 Thế năng của con lắc (Chọn gốc thế năng tại VTCB và con lắc có li độ góc α)

image025.gif

5.3 Cơ năng của con lắc

W = image024.gif+ image026.gif = const

* Chú ý : Các công thức tính động năng, thế năng và cơ năng trên là những công thức tính chính xác với mọi giá trị của góc lệch α. Khi α nhỏ (α < 100) thì chúng ta có các công thức tính gần đúng giá trị của thế năng và cơ năng của con lắc như sau:

Vì: image027.gif

Khi đó: image028.gif

Động năng của con lắc đơn : Wđ = image024.gif

Thế năng của con lắc đơn : image029.gif

Do image030.gif nên ta có image031.gif

Cơ năng của con lắc đơn : image032.gif

- Đơn vị tính : W, Wd, Wt (J); α, α0 (rad); m (kg); image034.gif.

BÀI TẬP VẬN DỤNG

+ Dạng 1: Chu kỳ và tần số dao động của con lắc đơn

Ví dụ 1: Một con lắc đơn có chu kỳ T = 2s. Nếu tăng chiều dài image001.gifcủa con lắc thêm 20,5cm thì chu kỳ dao động mới của con lắc là 2,2s. Tìm chiều dài image001.gifvà gia tốc trọng trường g.

Hướng dẫn giải:

Gọi T và T’ là chu kỳ dao động của con lắc trước và sau khi tăng chiều dài.

Ta có:

image035.gif 0,976 m

Thay image001.gifvào công thức tính T ta có image036.gif 9,632m/s2.

Ví dụ 2 : Hai con lắc đơn có hiệu chiều dài là 14cm. Trong cùng một khoảng thời gian con lắc thứ nhất thực hiện được 15 dao động thì con lắc thứ hai thực hiện được 20 dao động. Tính chiều dài image001.gif và chu kỳ T của mỗi con lắc. Lấy gia tốc trọng trường g = 10m/s2.

Hướng dẫn giải :

Ta có số dao động N và khoảng thời gian Δt mà các con lắc thực hiện được liên hệ với nhau theo phương trình: Δt = N.T

Theo bài ta có : image039.gif

Mà: image040.gif

Từ đó ta có: image041.gif

Với: image042.gif1,13s

Với image043.gif0,85s

+ Dạng 2: Tính tốc độ và lực căng dây của con lắc đơn

Ví dụ 1 : Một con lắc đơn có chiều dài dây treo là 100cm, kéo con lắc lệch khỏi VTCB một góc α0với cosα0 = 0,892 rồi truyền cho nó vận tốc v = 30cm/s. Lấy g = 10m/s2.

a. Tính vmax

b. Vật có khối lượng m = 100g. Hãy tính lực căng dây khi dây treo hợp với phương thẳng đứng góc α với cosα = 0,9

Hướng dẫn giải :

a. Áp dụng công thức tính tốc độ của con lắc đơn ta có:

image048.gif

b. Theo công thức tính lực căng dây treo ta có:

image049.gif

Ví dụ 2 : Một con lắc đơn có m = 100g, dao động điều hòa với biên độ góc α0 = 300. Lấy g = 10m/s2. Tính lực căng dây cực tiểu của con lắc trong quá trình dao động.

Hướng dẫn giải :

Ta có công thức tính lực căng dây: image051.gif

Lực căng dây đạt giá trị cực tiểu khi: image052.gif

Khi đó: image053.gif

Ví dụ 3 : Một con lắc đơn có khối lượng m = 100g, chiều dài image054.gifdao động với biên độ góc image055.gif. Tính động năng và tốc độ của con lắc khi nó đi qua vị trí có góc lệch image056.gif, lấy g = 10m/s2.

Hướng dẫn giải :

Vận tốc của con lắc đơn được tính theo công thức:

image057.gif

Động năng của con lắc là: image058.gif

+ Dạng 3: Lập phương trình dao động của con lắc đơn.

* Chú ý : Khi lập phương trình dao động của con lắc đơn có hai dạng phương trình:

- Phương trình dao động theo li độ dài: image059.gif

- Phương trình dao động theo li độ góc image060.gifvới image061.gif

Ví dụ 1 : Một con lắc đơn dao động điều hòa có chu kỳ dao động T = 2s. Lấy g = 10m/s2, π2 = 10. Viết phương trình dao động của con lắc biết rằng tại thời điểm ban đầu vật có li độ góc α = 0,05 (rad) và vận tốc v = -15,7 (cm/s).

Hướng dẫn giải :

Gọi phương trình dao động theo li độ dài của con lắc là: image065.gif

Trong đó: image066.gif

Áp dụng hệ thức liên hệ ta tính được biên độ dài của con lắc đơn:

image067.gif

Khi đó tại t = 0 ta có:

image068.gif

Vậy phương trình dao động của con lắc là: image069.gif.

Ví dụ 2 : Một con lắc đơn dao động điều hòa có chiều dài image070.gif. Tại t = 0, từ vị trí cân bằng truyền cho con lắc một vận tốc ban đầu 14cm/s theo chiều dương của trục tọa độ. Lấy g = 9,8m/s2, viết phương trình dao động của con lắc.

Hướng dẫn giải :

Gọi phương trình dao động theo li độ dài của con lắc là: image065.gif

Tần số góc dao động: image071.gif

Vận tốc tại vị trí cân bằng là vận tốc cực đại nên ta có: image072.gif

Khi đó tại t = 0 ta có: image073.gif

Vậy phương trình dao động của con lắc là image074.gif.

+ Dạng 4 : Năng lượng dao động của con lắc đơn

Chú ý khi làm bài tập :

- Tính toán năng lượng dao động khi góc lệch lớn (Dao động của con lắc khi này là dao động tuần hoàn chứ không phải dao động điều hòa) :

image075.gif

- Tính toán năng lượng dao động khi góc lệch nhỏ (lúc này dao động của con lắc là dao động điều hòa, thường thì trong kỳ thi Đại học sẽ là trường hợp này):

image076.gif

- Khi đề bài cho mối quan hệ giữa động năng và thế năng (chẳng hạn cho Wd = k.Wt, với k là một hệ số tỉ lệ nào đó) thì:

+ Tính li độ dài (s) hay li độ góc (α) chúng ta quy hết về theo Thế năng (Wt). Cụ thể như sau:

image077.gif (1)

+ Tương tự để tính tốc độ v thì chúng ta quy hết theo động năng (Wd) :

image078.gif

Nhận xét :

- Nhìn biểu thức thì có vẻ phức tạp nhưng thực ra trong bài toán cụ thể chúng ta thực hiện phép giản ước sẽ được biểu thức hay kết quả đẹp hơn nhiều.

- Trong các đề thi để cho việc tính toán đơn giản thì ở (1) thường cho các giá trị của k là k = 1 hoặc k = 3.

Ví dụ 1 : Một con lắc đơn có image079.gif, dao động điều hòa tại nơi có g = 10m/s2 và góc lệch cực đại là 90. Chọn gốc thế tại vị trí cân bằng. Giá trị của vận tốc con lắc tại vị trí động năng bằng thế năng là bao nhiêu ?

Hướng dẫn giải :

Năng lượng dao động của con lắc đơn là: image080.gif

Khi động năng bằng thế năng (tính vận tốc nên nhớ quy về Động năng nhé) ta có:

image081.gif

Ví dụ 2 : Một con lắc đơn gồm một quả cầu có khối lượng 500g treo vào một sợi dây mảnh, dài 60cm. Khi con lắc đang ở vị trí cân bằng thì cung cấp cho nó một năng lượng 0,015J, khi đó con lắc dao động điều hòa. Tính biên độ dao động của con lắc. Lấy g = 10m/s2.

Hướng dẫn giải :

Biên độ góc dao động của con lắc được tính từ phương trình của năng lượng:

image082.gif

Ví dụ 3 : Một con lắc đơn có m = 200g, g = 9,86 m/s2. Nó dao động với phương trình: image083.gif

a. Tìm chiều dài image001.gifvà năng lượng dao động của con lắc.

b. Tại t = 0 vật có li độ và vận tốc bằng bao nhiêu?

c. Tính vận tốc của con lắc khi nó ở vị trí image084.gif

d. Tìm thời gian nhỏ nhất (tmin) để con lắc đi từ vị trí có Động năng cực đại đến vị trí mà Wđ = 3Wt

Hướng dẫn giải :

a. Ta có: image085.gif

Biên độ dài của con lắc là A = image086.gif

Năng lượng dao động của con lắc là: image087.gif

b. Từ giả thiết ta có phương trình theo li độ dài của con lắc:

image088.gif

Từ đó phương trình vận tốc : image089.gif

Tại t = 0 thì image090.gif

c. Khi image091.gif

Từ đó ta được: image092.gif.

Thay giá trị m = 0,2kg và W tính được ở câu a ta tìm được v.

d. Áp dụng công thức ở (1) ta có : Khi động năng cực đại vật ở Vị trí cân bằng (α = 0).

Khi động năng bằng 3 lần thế năng ta có :

image093.gif

Vậy bài toán trở thành tìm tmin khi vật đi từ vị trí có α = 0 đến vị trí có image094.gif

Ta dễ dàng tìm được image095.gif

Trung tâm luyện thi, gia sư - dạy kèm tại nhà NTIC Đà Nẵng

LIÊN HỆ NGAY VỚI CHÚNG TÔI ĐỂ BIẾT THÊM THÔNG TIN CHI TIẾT

ĐÀO TẠO NTIC

Địa chỉ: Đường nguyễn lương bằng, P.Hoà Khánh Bắc, Q.Liêu Chiểu, Tp.Đà Nẵng Hotline: 0905540067 - 0778494857

Email: daotaontic@gmail.com

Từ khóa » Góc Lệch Alpha