[LỜI GIẢI] Cho N Là Số Nguyên Dương Thỏa Mãn Cn^0 + 2Cn^1 + 2 ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Cho n là số nguyên dương thỏa mãn Cn^0 + 2Cn^1 + 2^2Cn^2... + 2^nCn^n = 14348907. Hệ số có số hạng c Cho n là số nguyên dương thỏa mãn Cn^0 + 2Cn^1 + 2^2Cn^2... + 2^nCn^n = 14348907. Hệ số có số hạng c

Câu hỏi

Nhận biết

Cho \(n\) là số nguyên dương thỏa mãn \(C_n^0 + 2C_n^1 + {2^2}C_n^2... + {2^n}C_n^n = 14348907.\) Hệ số có số hạng chứa \({x^{10}}\) trong khai triển của biểu thức \({\left( {{x^2} - \dfrac{1}{{{x^3}}}} \right)^n}\) bằng

A. \( - 1365.\) B. \(32760.\) C. \(1365\) D. \( - 32760.\)

Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

\( + )\)\(C_n^0 + 2C_n^1 + {2^2}C_n^2 + ... + {2^n}C_n^n = 14348907\)

Xét: \({\left( {1 + x} \right)^n} = C_n^0 + C_n^1.x + ... + C_n^n.{x^n}\)

Thay \(x = 2\)\( \Rightarrow \)\({\left( {1 + 2} \right)^n} = C_n^0 + C_n^1.2 + ... + C_n^n{.2^n}\)\( \Leftrightarrow {3^n} = 14348907\)\( \Leftrightarrow n = 15\)

\( + )\)Số hạng tổng quát của khai triển: \({\left( {{x^2} - \dfrac{1}{{{x^3}}}} \right)^{15}}\)là: \({T_{k + 1}} = C_{15}^k.{\left( {{x^2}} \right)^{15 - k}}.{\left( { - 1} \right)^k}.{\left( {{x^{ - 3}}} \right)^k}\)\( = C_{15}^k.{\left( { - 1} \right)^k}.{x^{30 - 5k}}\)

Số hạng chứa \({x^{10}}\)\( \Rightarrow {x^{30 - 5k}} = {x^{10}}\)\( \Leftrightarrow k = 4\)

\( \Rightarrow \)Hệ số của số hạng chứa \({x^{10}}\)là: \(C_{15}^4.{\left( { - 1} \right)^4} = 1365\).

Chọn C.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Phương trình có 1 họ nghiệm

    Chi tiết
  • Phương trình có 2 họ nghiệm là: x = pi +kpi; x = k2pi/3

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • x = kpi; x = pi/3 + k2pi/3

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • #VALUE!

    Chi tiết
  • (x = pi   6 + kpi   3;x = pi 

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • x = pi/2 + k2 pi                                      x = p

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Cho N Là Số Nguyên Dương Thỏa Mãn