[LỜI GIẢI] Đổi Biến X = 4sin T Của Tích Phân I = Tích Phân0^ Căn 8 Căn 16

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Đổi biến x = 4sin t của tích phân I = tích phân0^ căn 8 căn 16 - x^2 dx ta được: Đổi biến x = 4sin t của tích phân I = tích phân0^ căn 8 căn 16 - x^2 dx ta được:

Câu hỏi

Nhận biết

Đổi biến \(x = 4\sin t\) của tích phân \(I = \int\limits_0^{\sqrt 8 } {\sqrt {16 - {x^2}} dx} \) ta được:

A. \(I =  - 16\int\limits_0^{{\pi  \over 4}} {{{\cos }^2}tdt} \) B. \(I = 8\int\limits_0^{{\pi  \over 4}} {\left( {1 + \cos 2t} \right)dt} \) C. \(I = 16\int\limits_0^{{\pi  \over 4}} {{{\sin }^2}tdt} \)        D. \(I = 8\int\limits_0^{{\pi  \over 4}} {\left( {1 - \cos 2t} \right)dt} \)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Hướng dẫn giải chi tiết

Đặt \(x = 4\sin t \Rightarrow dx = 4\cos tdt\)

Đổi cận:

Khi đó ta có: \(I = 4\int\limits_0^{{\pi  \over 4}} {\sqrt {16 - 16{{\sin }^2}t} \cos tdt}  = 16\int\limits_0^{{\pi  \over 4}} {{{\cos }^2}tdt}  = 8\int\limits_0^{{\pi  \over 4}} {\left( {1 + \cos 2t} \right)d} t\)

Chọn B.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Nguyên Hàm Căn 16-x^2