[LỜI GIẢI] Trong Không Gian Oxyz Cho Hai Mặt Cầu ( S1 ):( X - 1 )^2 + ( Z

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Trong không gian Oxyz cho hai mặt cầu ( S1 ):( x - 1 )^2 + ( y - 1 )^2 + ( z - 2 )^2 = 16 và ( S2 ): Trong không gian Oxyz cho hai mặt cầu ( S1 ):( x - 1 )^2 + ( y - 1 )^2 + ( z - 2 )^2 = 16 và ( S2 ):

Câu hỏi

Nhận biết

Trong không gian \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):\,\,{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\) và \(\left( {{S_2}} \right):\,\,{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\) cắt nhau theo giao tuyến là một đường tròn là \(I\left( {a;b;c} \right)\). Tính \(a + b + c\).

A. \(\dfrac{7}{4}\) B. \( - \dfrac{1}{4}\) C. \(\dfrac{{10}}{3}\) D. \(1\)

Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình mặt phẳng giao tuyến của 2 mặt cầu là

\(\begin{array}{l}{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} - {\left( {x + 1} \right)^2} - {\left( {y - 2} \right)^2} - {\left( {z + 1} \right)^2} = 16 - 9\\ \Leftrightarrow - 2x + 1 - 2y + 1 - 4z + 4 - 2x - 1 + 4y - 4 - 2z - 1 = 7\\ \Leftrightarrow - 4x + 2y - 6z - 7 = 0 \Leftrightarrow 4x - 2y + 6z + 7 = 0\,\,\left( P \right)\end{array}\)

Mặt cầu \(\left( {{S_1}} \right)\) có tâm \({I_1}\left( {1;1;2} \right)\), bán kính \({R_1} = 4\).

Gọi \(\Delta \) là đường thẳng đi qua \({I_1}\) và vuông góc với \(\left( P \right) \Rightarrow \Delta :\,\,\dfrac{{x - 1}}{4} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 2}}{6}\).

Gọi \(I = \left( P \right) \cap \Delta \Rightarrow I\left( {1 + 4t;1 - 2t;2 + 6t} \right)\).

\(I \in \left( P \right) \Rightarrow 4\left( {1 + 4t} \right) - 2\left( {1 - 2t} \right) + 6\left( {2 + 6t} \right) + 7 = 0 \Leftrightarrow 56t + 21 = 0 \Leftrightarrow t = - \dfrac{3}{8}\).

\( \Rightarrow I\left( { - \dfrac{1}{2};\dfrac{7}{4}; - \dfrac{1}{4}} \right) \Rightarrow a + b + c = - \dfrac{1}{2} + \dfrac{7}{4} - \dfrac{1}{4} = 1\).

Chọn D

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Trong Không Gian Oxyz Cho 2 Mặt Cầu S1 S2