Lý Thuyết Căn Thức Bậc Hai Toán 9
Có thể bạn quan tâm
Căn thức bậc hai
I. Sơ đồ tư duy Căn thức bậc hai
II. Căn thức bậc hai
1. Các kiến thức cần nhớ
Căn bậc hai số học
Số dương a có đúng hai căn bậc hai là: $\sqrt a $ và $-\sqrt a $
Với số dương $a$, số $\sqrt a $ được gọi là căn bậc hai số học của $a$.
Số $0$ cũng được gọi là căn bậc hai số học của $0$.
+) $\sqrt a = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.$
+) So sánh hai căn bậc hai số học:
Với hai số $a,b$ không âm ta có $a < b \Leftrightarrow \sqrt a< \sqrt b $.
Căn thức bậc hai
Với $A$ là một biểu thức đại số, người ta gọi $\sqrt A $ là căn thức bậc hai của $A$. Khi đó, $A$ được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn.
$\sqrt A $ xác định hay có nghĩa khi $A$ lấy giá trị không âm.
Hằng đẳng thức $\sqrt {{A^2}} = \left| A \right|$
Với mọi số $a$, ta có $\sqrt {{a^2}} = \left| a \right|$.
Một cách tổng quát, với $A$ là một biểu thức ta có
$\sqrt {{A^2}} = \left| A \right|$ nghĩa là
$\sqrt {{A^2}} = A$ nếu $A \ge 0$ và $\sqrt {{A^2}} = - A$ nếu $A < 0$.
2. Một số dạng toán thường gặp
Dạng 1: Tìm căn bậc hai số học và so sánh hai căn bậc hai.
Phương pháp:
Sử dụng kiến thức với hai số $a,b$ không âm ta có $a < b \Leftrightarrow \sqrt a < \sqrt b $.
Dạng 2: Tính giá trị của biểu thức chứa căn bậc hai
Phương pháp:
Sử dụng hằng đẳng thức $\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}\,\,\,\,A\,\,\,\,\,{\rm{khi}}\,\,\,A \ge 0\\ - A\,\,\,\,\,\,{\rm{khi}}\,\,\,A < 0\end{array} \right.$
Dạng 3: Rút gọn biểu thức chứa căn bậc hai
Phương pháp:
- Đưa các biểu thức dưới dấu căn về hằng đẳng thức (thông thường là ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$, ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$)
- Sử dụng hằng đẳng thức $\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}\,\,\,\,A\,\,\,\,\,{\rm{khi}}\,\,\,A \ge 0\\ - A\,\,\,\,\,\,{\rm{khi}}\,\,\,A < 0\end{array} \right.$
Dạng 4: Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa
Phương pháp:
Sử dụng kiến thức biểu thức $\sqrt A $ có nghĩa khi và chỉ khi $A \ge 0.$
Dạng 5: Giải phương trình chứa căn bậc hai
Phương pháp:
Ta chú ý một số phép biến đổi tương đương liên quan đến căn thức bậc hai sau đây:
\(\sqrt A = B \Leftrightarrow \left\{ \begin{array}{l}B \ge 0\\A = {B^2}\end{array} \right.\) ; \(\sqrt {{A^2}} = B \Leftrightarrow \left| A \right| = B\)
\(\sqrt A = \sqrt B \Leftrightarrow \left\{ \begin{array}{l}A \ge 0\left( { B \ge 0} \right)\\A = B\end{array} \right.\) ; \(\sqrt {{A^2}} = \sqrt {{B^2}} \Leftrightarrow \left| A \right| = \left| B \right| \Leftrightarrow A = \pm B\)
Luyện bài tập vận dụng tại đây!
Từ khóa » điều Kiện Biểu Thức Dưới Dấu Căn
-
Tìm điều Kiện để Biểu Thức Căn Có Nghĩa - Lớp 9
-
Cách Tìm điều Kiện để Biểu Thức Căn Thức Có Nghĩa (xác định) Và Bài ...
-
Điều Kiện Xác định Của Căn Bậc Hai - Việt Long - HOC247
-
Tìm điều Kiện để Biểu Thức Căn Có Nghĩa - Toán Lớp 9 - Haylamdo
-
Căn Thức Bậc Hai - Lý Thuyết Toán 9
-
Tìm điều Kiện Xác định Của Biểu Thức Chứa Căn Toán Lớp 9
-
Tìm điều Kiện Xác định Của Biểu Thức Chứa Căn Toán Lớp 9 - Tech12h
-
Căn Bậc Hai Và Hẳng đẳng Thức \(\sqrt{A^2}=A\)
-
20 Bài Tập Tìm điều Kiện Xác định Của Biểu Thức Chứa Căn
-
Cách Tìm điều Kiện Xác định Của Biểu Thức Chứa Căn
-
Căn Thức Bậc Hai Là Gì? Các Dạng Bài Tập Về Căn Thức Bậc Hai - VOH
-
Toán 9 - Căn Thức Bậc Hai Và Hằng đẳng Thức - Blog Lớp Học Tích Cực
-
Tìm điều Kiện Của X để Căn Thức Có Nghĩa, Xác định Hay Tồn Tại