Lý Thuyết Công Thức Nghiệm Thu Gọn Toán 9
Có thể bạn quan tâm
- Trang chủ
- Lý thuyết toán học
- Toán 9
- CHƯƠNG 4: HÀM SỐ y=ax^2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
- Công thức nghiệm thu gọn
1. Các kiến thức cần nhớ
Nhắc lại công thức nghiệm của phương trình bậc hai
Xét phương trình bậc hai $a{x^2} + bx + c = 0$ ${\rm{ }} (a \ne 0)$
và biệt thức $\Delta = {b^2} - 4ac.$
Trường hợp 1. Nếu $\Delta < 0$ thì phương trình vô nghiệm.
Trường hợp 2. Nếu $\Delta = 0$ thì phương trình có nghiệm kép: ${x_1} = {x_2} = - \dfrac{b}{{2a}}$
Trường hợp 3. Nếu $\Delta > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{-b + \sqrt {\Delta } }}{2a}$, ${x_{2}} = \dfrac{{-b - \sqrt {\Delta } }}{2a}$
Công thức nghiệm thu gọn của phương trình bậc hai
Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = {b^{'2}} - ac.$
Trường hợp 1. Nếu $\Delta ' < 0$ thì phương trình vô nghiệm.
Trường hợp 2. Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} = - \dfrac{{b'}}{a}$
Trường hợp 3. Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} = \dfrac{{-b' - \sqrt {\Delta '} }}{a}$
2. Các dạng toán thường gặp
Dạng 1: Giải phương trình bậc hai một ẩn bằng cách sử dụng công thức nghiệm thu gọn
Phương pháp:
Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$ và biệt thức $\Delta ' = b{'^2} - ac.$
Trường hợp 1. Nếu $\Delta ' < 0$ thì phương trình vô nghiệm.
Trường hợp 2. Nếu $\Delta ' = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} = - \dfrac{{b'}}{a}$
Trường hợp 3. Nếu $\Delta ' > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} =\dfrac{{-b' - \sqrt {\Delta '} }}{a}$
Dạng 2: Xác định số nghiệm của phương trình bậc hai
Phương pháp:
Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0$ với $b = 2b'$
+) Phương trình có nghiệm kép \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' = 0\end{array} \right.\)
+) Phương trình có hai nghiệm phân biệt\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right.\)
+) Phương trình vô nghiệm \( \Leftrightarrow \left[ \begin{array}{l}a = 0,b' = 0,c \ne 0\\a \ne 0,\Delta ' < 0\end{array} \right.\)
Dạng 3: Giải và biện luận phương trình bậc hai (dùng một trong hai công thức: công thức nghiệm và công thức nghiệm thu gọn)
Phương pháp:
* Giải và biện luận phương trình bậc hai theo tham số \(m\) là tìm tập nghiệm của phương trình tùy theo sự thay đổi của \(m\).
Xét phương trình bậc hai \(a{x^2} + bx + c = 0\) với \(\Delta = {b^2} - 4ac\) ( hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac\) )
Trường hợp 1. Nếu \(\Delta < 0\) hoặc \(\left( {\Delta ' < 0} \right)\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta = 0\) hoặc \(\left( {\Delta ' = 0} \right)\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}\).
Trường hợp 3. Nếu \(\Delta > 0\) hoặc \(\left( {\Delta ' > 0} \right)\) thì phương trình có hai nghiệm phân biệt ${x_{1}} = \dfrac{{-b' + \sqrt {\Delta '} }}{a}$, ${x_{2}} = \dfrac{{-b' - \sqrt {\Delta '} }}{a}$.
Trang trước Mục Lục Trang sauCó thể bạn quan tâm:
- Ôn tập chương 4: HÀM SỐ Y=AX^2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
- Ôn tập chương 4: Biểu thức đại số
- Ôn tập chương 3: Phương trình bậc nhất một ẩn
- Giải bài toán bằng cách lập hệ phương trình
- Giải hệ phương trình bằng phương pháp cộng đại số
Tài liệu
Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống
Các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác
Toán 10 - 315 bài tập trắc nghiệm cung và góc lượng giác – công thức lượng giác có đáp án
Bài tập (Có đáp án) trắc nghiệm nguyên hàm bằng định nghĩa
Bài tập trắc nhiệm toán lớp 10: 315 Bài tập trắc nghiệm cung và góc lượng giác - Công thức lượng giác có đáp án
Từ khóa » Vi ét Rút Gọn
-
Lý Thuyết Công Thức Nghiệm Thu Gọn | SGK Toán Lớp 9
-
Lý Thuyết Hệ Thức Vi-ét Và ứng Dụng. | SGK Toán Lớp 9
-
Toán 9 Bài 5: Công Thức Nghiệm Thu Gọn - HOC247
-
Ứng Dụng Của Hệ Thức Vi- ét Trong Giải Toán
-
Lý Thuyết Công Thức Nghiệm Thu Gọn Hay, Chi Tiết - Toán Lớp 9
-
Sử Dụng Hằng đẳng Thức Và Hệ Thức Vi - Ét đảo Rút Gọn Biểu Thức Có ...
-
Sử Dụng Hằng đẳng Thức Và Hệ Thức Viét đảo Rút Gọn Biểu Thức Có
-
Sử Dụng Hằng đẳng Thức Và Hệ Thức Viét đảo Rút Gọn Biểu Thức Có ...
-
Phương Trình Bậc Hai – Định Lý Vi-et P2 - Vinastudy
-
Cách Rút Gọn Biểu Thức Chứa Căn Bậc Hai - Toán 9 - Abcdonline
-
Lý Thuyết Công Thức Nghiệm Thu Gọn Toán 9
-
Giải Bài 3: Phương Trình Bậc Hai Một ẩn Toán Học Lớp 9 - Colearn
-
Rút Gọn Biểu Thức Chứa Căn Bậc Hai