Lý Thuyết Góc ở Tâm. Số đo Cung (mới 2022 + Bài Tập) - Toán 9

Lý thuyết Toán 9 Bài 1: Góc ở tâm. Số đo cung

Bài giảng Toán 9 Bài 1: Góc ở tâm. Số đo cung

A. Lý thuyết

1. Góc ở tâm

Góc ở tâm là góc có đỉnh trùng với tâm của đường tròn.

• Hai cạnh của góc ở tâm cắt đường tròn tại hai điểm, do đó chia đường tròn thành hai cung.

+ Cung nhỏ: cung nằm bên trong góc (với góc α (0 < α < 180°)).

+ Cung lớn: Cung nằm bên ngoài góc.

• Cung AB được kí hiệu là AB⏜. Để phân biệt hai cung có chung các mút là A và B như hình vẽ (0 < α < 180°), ta kí hiệu: AmB⏜, AnB⏜

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Trong đó: AnB⏜ là cung nhỏ, AmB⏜ là cung lớn.

Với α = 180° thì mỗi cung là một nửa đường tròn.

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

• Cung nằm bên trong góc gọi là cung bị chắn.

Khi đó, AnB⏜ là cung bị chắn bởi góc AOB hay góc AOB chắn cung nhỏ AnB⏜.

2. Số đo cung

• Số đo của cung nhỏ bằng số đo góc ở tâm chắn cung đó.

• Số đo của cung lớn bằng hiệu giữa 360° và số đo cung nhỏ (có chung hai mút với cung lớn).

• Số đo của nửa đường tròn bằng 180°.

Số đo của cung AB được kí hiệu là sđ AB⏜.

Ví dụ 1. Cho góc α = 80° là góc ở tâm O như hình vẽ. Tính số đo cung lớn.

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Lời giải:

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

- Chú ý:

+ Cung nhỏ có số đo nhỏ hơn 180°.

+ Cung lớn có số đo lớn hơn 180°.

+ Khi hai mút của cung trùng nhau, ta có “cung không” với số đo là 0° và cung cả đường tròn có số đo là 360°.

3. So sánh hai cung

• Hai cung được gọi là bằng nhau nếu chúng có cùng số đo bằng nhau.

• Trong hai cung, cung nào có số đo lớn hơn được gọi là cung lớn hơn.

Ví dụ 2. Cho đường tròn (O) như hình vẽ.

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Ta thấy hai cung AmB⏜ và CnD⏜ có số đo bằng nhau và đều bằng 60o.

Khi đó, hai cung AmB⏜ và CnD⏜ bằng nhau.

- Kí hiệu: Hai cung AB và CD bằng nhau được kí hiệu là AB⏜=CD⏜.

Ví dụ 3. Cho đường tròn (I) như hình vẽ.

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Ta thấy hai cung EmF⏜ và GnH⏜ có số đo nhỏ hơn (45o < 75o).

Khi đó, EmF⏜ nhỏ hơn GnH⏜.

- Kí hiệu: Cung EF nhỏ hơn cung GH được kí hiệu là EF⏜>GH⏜.

Ta có thể gọi cung GH lớn hơn cung EF và kí hiệu là GH⏜<EF⏜.

4. Khi nào Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1) ?

Định lí: Nếu C là một điểm nằm trên cung AB thì Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Ví dụ 4. Điểm C nằm trên cung nhỏ AB như hình vẽ.

Chứng minh: Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Lời giải:

Ta có điểm C nằm trên cung nhỏ AB.

Khi đó, điểm C chia cung nhỏ AB thành hai cung nhỏ AC và BC.

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

B. Bài tập tự luyện

Bài 1. Cho đường tròn (O; R). Trên đường tròn đó lấy hai điểm A và B sao cho AB=R2. Tính số đo của hai cung AB.

Lời giải:

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Đặt cung nhỏ AB là AmB⏜ và cung lớn AB là AnB⏜.

Hai điểm A và B nằm trên đường tròn (O; R) nên OA = OB = R

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Nên ΔABC vuông tại A (theo định lý Py – ta – go đảo).

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Vậy số đo cung nhỏ và cung lớn AB lần lượt là 90o và 270o.

Bài 2. Cho hai đường tròn đồng tâm (O; R) và O;  R32. Trên đường tròn nhỏ lấy một điểm M. Tiếp tuyến tại M của đường tròn nhỏ cắt đường tròn lớn tại A và B. Tia OM cắt đường tròn lớn tại C. Chứng minh rằng CA⏜=CB⏜.

Lời giải:

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Tiếp tuyến tại M của đường tròn nhỏ cắt đường tròn lớn tại A và B hay AM là tiếp tuyến của đường tròn O;  R32 nên OM⊥AB.

Do đó OM là đường cao của ΔOAB.

Mặt khác, ΔOAB có OA = OB = R nên ΔOAB cân tại O.

Xét ΔOAB cân tại O có OM là đường cao nên OM cũng là đường phân giác hay AOM^=BOM^

Lý thuyết Góc ở tâm. Số đo cung chi tiết – Toán lớp 9 (ảnh 1)

Xem thêm các bài tổng hợp lý thuyết Toán lớp 9 đầy đủ, chi tiết khác:

Lý thuyết Liên hệ giữa cung và dây

Lý thuyết Góc nội tiếp

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung

Lý thuyết Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn

Lý thuyết Cung chứa góc

Từ khóa » Tính Chất Góc ở Tâm Lớp 9