Nếu Hai Vòi Nước Cùng Chảy Vào Một Bể Cạn Thì Bể Sẽ đầy Sau 1 Giờ ...

Đề bài

Nếu hai vòi nước cùng chảy vào một bể cạn (không có nước) thì bể sẽ đầy trong \(1\) giờ \(20\) phút. Nếu mở vòi thứ nhất trong \(10\) phút và vòi thứ hai trong \(12\) phút thì chỉ được \(\dfrac{2}{15}\) bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu ?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

B1: Chọn ẩn, đặt điều kiện thích hợp.

      Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

      Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng.

B2: Giải hệ phương trình.

B3: Kiểm tra trong các nghiệm tìm được nghiệm nào thỏa mãn điều kiện, nghiệm nào không thỏa mãn, rồi trả lời

Lời giải chi tiết

Gọi thời gian vòi thứ nhất chảy một mình đầy bể là: \(x\) phút, vòi thứ hai chảy một mình đầy bể là: \(y\) phút. (Điều kiện \(x > 80, y > 80\) ). 

Trong \(1\) phút vòi thứ nhất chảy được \(\dfrac{1}{x}\) bể, vòi thứ hai chảy được \(\dfrac{1}{y}\) bể.

Nên trong \(1\) phút cả hai vòi chảy được \(\dfrac{1}{x} +\dfrac{1}{y}\) (bể).

Theo đề bài, cả hai vòi cùng chảy thì sau \(1\) giờ \(20\) phút = \(80\) phút thì đầy bể nên trong \(1\) phút cả hai vòi chảy được: \(\dfrac{1}{80}\)  (bể).

Do đó ta có phương trình: \(\dfrac{1}{x} +\dfrac{1}{y}=\dfrac{1}{80}\)  (1)

Trong \(10\) phút vòi thứ nhất chảy được \(10.\dfrac{1}{x}\) bể, trong \(12\) phút vòi thứ hai chảy được \(12. \dfrac{1}{y}\) bể thì được \(\dfrac{2}{15}\) bể, ta có phương trình:

\(10. \dfrac{1}{x} + 12. \dfrac{1}{y} = \dfrac{2}{15}\)  (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{\begin{matrix} \dfrac{1}{x}+ \dfrac{1}{y} = \dfrac{1}{80}& & \\ 10. \dfrac{1}{x} + 12. \dfrac{1}{y} = \dfrac{2}{15} & & \end{matrix}\right.\)

Đặt \(\left\{\begin{matrix}\dfrac{1}{x} =a  & & \\ \dfrac{1}{y}=b & & \end{matrix}\right.\) ; (\(a,\ b \ne 0\) )

Hệ đã cho trở thành: 

\(\left\{\begin{matrix} a+ b = \dfrac{1}{80}& & \\ 10. a + 12. b = \dfrac{2}{15} & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 10a+ 10b = \dfrac{10}{80}& & \\ 10a + 12 b = \dfrac{2}{15} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 10a+ 10b = \dfrac{1}{8}& & \\ 10a + 12 b = \dfrac{2}{15} & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2b = \dfrac{1}{120}& & \\ 10a + 12 b = \dfrac{2}{15} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b = \dfrac{1}{240}& & \\ 10a  = \dfrac{2}{15}-12b & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b = \dfrac{1}{240}& & \\ 10a  = \dfrac{2}{15}-12.\dfrac{1}{240}  & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} b = \dfrac{1}{240}& & \\ a  = \dfrac{1}{120}  & & \end{matrix} (thỏa\ mãn)\right.\)

Suy ra  \(\left\{\begin{matrix}\dfrac{1}{x} = \dfrac{1}{120} & & \\ \dfrac{1}{y}=\dfrac{1}{240} & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x = 120 & & \\ y=240 & & \end{matrix}\right.\) (thỏa mãn)

Vậy vòi thứ nhất chảy một mình trong \(120\) phút (2 giờ) thì đầy bể, vòi thứ hai chảy một mình trong \(240\) phút (4 giờ) thì đầy bể.

Loigiaihay.com

Nếu hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì bể sẽ đầy trong 1 giờ 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu?

Nếu hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì bể sẽ đầy trong 1 giờ 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu?

Nếu mở cả hai vòi nước chảy vào một bể cạn thì sau 2 giờ 55 phút bể đầy nước. Nếu mở riêng từng vòi thì vòi thứ nhất làm đầy bể nhanh hơn vòi thứ hai là 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu sẽ đầy bể?

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.

(Điều kiện: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được  bể; vòi thứ hai chảy được  bể.

Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:

Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :

Ta có hệ phương trình:

Đặt  . Khi đó hệ phương trình trở thành :

QUẢNG CÁO

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Hai vật chuyển động đều trên một con đường tròn đường kính 20cm , xuất phát cùng một lúc, từ cùng một điểm. Nếu chuyển động cùng chiều thì cứ 20 giây chúng lại gặp nhau. Nếu chuyển động ngược chiểu thì cứ sau 4 giây chúng lại gặp nhau. Tính vận tốc của mỗi vật.

Xem đáp án » 27/03/2020 5,288

Nhà Lan có một mảnh vườn trồng rau cải bắp. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số cây cải bắp. Lan tính rằng: Nếu tăng thêm 8 luống rau, nhưng mỗi luống trồng ít đi 3 cây thì số cây toàn vườn ít đi 54 cây. Nếu giảm đi 4 luống, nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 32 cây. Hỏi vườn nhà Lan trồng bao nhiêu cây rau cải bắp?

Xem đáp án » 27/03/2020 4,440

Điểm số trung bình của một vận động viên bắn súng sau 100 lần bắn là 8,69 điểm. Kết quả cụ thể được ghi trong bảng sau, trong đó có hai ô bị mờ không đọc được (đánh dấu *):

Em hãy tìm lại các số trong hai ô đó.

Xem đáp án » 27/03/2020 2,881

(Bài toán cổ Ấn Độ) . Số tiền mua 9 quả thanh yên và 8 quả táo rừng thơm là 107 rupi. Số tiền mua 7 quả thanh yên và 7 quả táo rừng thơm là 91 rupi. Hỏi giá mỗi quả thanh yên và mỗi quả táo rừng thơm là bao nhiêu rupi?

Xem đáp án » 27/03/2020 1,804

Một người mua hai loại hàng và phải trả tổng cộng 2,17 triệu đồng, kể cả thuế giá trị gia tăng (VAT) với mức 10% đối với loại hàng thứ nhất và 8% đố với loại hàng thứ hai. Nếu thuế VAT ,là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 2,18 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng?

Xem đáp án » 27/03/2020 718

Từ khóa » Hai Vòi Nước Cùng Chảy Vào Một Bể Cạn Thì Sau 2 Giờ đầy Bể