Nếu Hàm Số Y=x+m+√(1−x^2) Có Giá Trị Lớn Nhất Bằng 2√2 Thì Giá ...

Skip to content

Nếu hàm số \( y=x+m+\sqrt{1-{{x}^{2}}} \) có giá trị lớn nhất bằng  \( 2\sqrt{2} \) thì giá trị của m là:

A. \( \frac{\sqrt{2}}{2} \)

B.  \( -\sqrt{2} \)

C.  \( \sqrt{2} \)

D.  \( -\frac{\sqrt{2}}{2} \)

Hướng dẫn giải:

Đáp án C.

Xét hàm số  \( y=x+m+\sqrt{1-{{x}^{2}}} \)

Tập xác định:  \( D=\left[ -1;1 \right] \).

Ta có: \({y}’=1-\frac{x}{\sqrt{1-{{x}^{2}}}}\)

\({y}’=0\Leftrightarrow \left\{ \begin{align}  & \sqrt{1-{{x}^{2}}}=x \\  & 1-{{x}^{2}}>0 \\ \end{align} \right.\) \(\Leftrightarrow \left\{ \begin{align} & 1>x\ge 0 \\  & \sqrt{1-{{x}^{2}}}=x \\ \end{align} \right.\) \(\Leftrightarrow \left\{ \begin{align} & 1>x\ge 0 \\ & 2{{x}^{2}}=1 \\ \end{align} \right.\) \( \Leftrightarrow \begin{cases} 1>x\ge 0 \\\left[\begin{array}{l} x=\frac{\sqrt{2}}{2} \\ x=-\frac{\sqrt{2}}{2}  \end{array}\right.\end{cases} \)

Ta có:  \( y(-1)=-1+m  \),  \( y(1)=1+m  \),  \( y\left( \frac{\sqrt{2}}{2} \right)=\sqrt{2}+m  \)

Do hàm số  \( y=x+m+\sqrt{1-{{x}^{2}}} \) liên tục trên  \( \left[ -1;1 \right] \) nên  \( \underset{[-1;1]}{\mathop{Max}}\,y=m+\sqrt{2} \)

Theo bài ra thì  \( \underset{[-1;1]}{\mathop{Max}}\,y=2\sqrt{2}\), suy ra  \( m+\sqrt{2}=2\sqrt{2}\Leftrightarrow m=\sqrt{2} \) .

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

  • Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
  • Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
  • Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
  • Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
  • Thời lượng học 1,5h - 2h/1 buổi!
  • Học phí giá rẻ - bình dân!
  • Đóng 3 tháng tặng 1 tháng
094.625.1920 - Thầy Nhân (Zalo)

Các bài toán liên quan

Tìm m để phương trình |f(x−1)+2|=m có 4 nghiệm thỏa mãn x1

Từ khóa » Căn (x-1)^2 Bằng 5