Oxymercuration Reaction - Wikipedia

Chemical reaction of an alkene with mercuric acetate to form an alcohol
Oxymercuration reaction[1]

In organic chemistry, the oxymercuration reaction is a chemical reaction that uses mercury salts transforms an alkene (R2C=CR2) into an alcohol. The alkene reacts with mercuric acetate (AcO−Hg−OAc), an electrophile, to yield an organomercury compound, which is subsequently transformed. The intermediate features an acetoxymercury (−HgOAc) group and a hydroxy (−OH) group attached to adjacent carbon atoms. Carbocations are not formed in this process, and thus rearrangements are not observed. The reaction follows Markovnikov's rule (the hydroxy group always add to the more substituted carbon). The oxymercuration part of the reaction involves anti addition of OH group. On the other hand, the demercuration part of the reaction involves free radical mechanism and is not stereospecific, i.e. H and OH may be syn or anti to each other.[2][3][4]

Oxymercuration followed by reductive demercuration is called an oxymercuration–reduction reaction or oxymercuration–demercuration reaction. This reaction, which is almost always done in practice instead of oxymercuration, is treated at the conclusion of the article.

Mechanism

[edit]

Oxymercuration can be fully described in three steps (the whole process is sometimes called deoxymercuration), which is illustrated in stepwise fashion to the right. In the first step, the nucleophilic double bond attacks the mercury ion, ejecting an acetoxy group. The electron pair on the mercury ion in turn attacks a carbon on the double bond, forming a mercurinium ion in which the mercury atom bears a positive charge. The electrons in the highest occupied molecular orbital of the double bond are donated to mercury's empty 6s orbital and the electrons in mercury's dxz (or dyz) orbital are donated in the lowest unoccupied molecular orbital of the double bond.

In the second step, the nucleophilic water molecule attacks the more substituted carbon, liberating the electrons participating in its bond with mercury. The electrons collapse to the mercury ion and neutralize it. The oxygen in the water molecule now bears a positive charge.

In the third step, a negatively charged acetate ion deprotonates the alkyloxonium ion, forming the waste product HOAc. The two electrons participating in the bond between oxygen and the attacked hydrogen collapse into the oxygen, neutralizing its charge and creating the final alcohol product.

Curved-arrow mechanism for the oxymercuration reaction.
Curved-arrow mechanism for the oxymercuration reaction.

Regioselectivity and stereochemistry

[edit]

Oxymercuration is very regioselective and is a textbook Markovnikov reaction; ruling out extreme cases, the water nucleophile will always preferentially attack the more substituted carbon, depositing the resultant hydroxy group there. This phenomenon is explained by examining the three resonance structures of the mercuronium ion formed at the end of the step one.

By inspection of these structures, it is seen that the positive charge of the mercury atom will sometimes reside on the more substituted carbon (approximately 4% of the time). This forms a temporary tertiary carbocation, which is a very reactive electrophile. The nucleophile will attack the mercuronium ion at this time. Therefore, the nucleophile attacks the more substituted carbon because it retains a more positive character than the lesser substituted carbon.

Stereochemically, oxymercuration is an anti addition. As illustrated by the second step, the nucleophile cannot attack the carbon from the same face as the mercury ion because of steric hindrance. There is simply insufficient room on that face of the molecule to accommodate both a mercury ion and the attacking nucleophile. Therefore, when free rotation is impossible, the hydroxy and acetoxymercuri groups will always be trans to each other.

Shown below is an example of regioselectivity and stereospecificity of the oxymercuration reaction with substituted cyclohexenes. A bulky group like t-butyl locks the ring in a chair conformation and prevents ring flips. With 4-t-butylcyclohexene, oxymercuration yields two products – where addition across the double bond is always anti – with slight preference towards acetoxymercury group trans to the t-butyl group, resulting in slightly more cis product. With 1-methyl-4-t-butylcyclohexene, oxymercuration yields only one product – still anti addition across the double bond – where water only attacks the more substituted carbon. The reason for anti addition across the double bond is to maximize orbital overlap of the lone pair of water and the empty orbital of the mercuronium ion on the opposite side of the acetoxymercury group. Regioselectivity is observed to favor water attacking the more substituted carbon, but water does not add syn across the double bond which implies that the transition state favors water attacking from the opposite side of the acetomercury group.[5]

Oxymercuration stereospecificity
Oxymercuration regioselectivity

Oxymercuration–reduction

[edit]

In practice, the mercury adduct product created by the oxymercuration reaction is almost always treated with sodium borohydride (NaBH4) in aqueous base in a reaction called demercuration. In demercuration, the acetoxymercury group is replaced with a hydrogen in a stereochemically insensitive reaction[6] known as reductive elimination. The combination of oxymercuration followed immediately by demercuration is called an oxymercuration–reduction reaction.[7]

Therefore, the oxymercuration-reduction reaction is the net addition of water across the double bond. Any stereochemistry set up by the oxymercuration step is scrambled by the demercuration step, so that the hydrogen and hydroxy group may be cis or trans from each other. Oxymercuration reduction is a popular laboratory technique to achieve alkene hydration with Markovnikov selectivity while avoiding carbocation intermediates and thus the rearrangement which can lead to complex product mixtures.

Other applications

[edit]

Oxymercuration is not limited to an alkene reacting with water to add hydroxyl and mercury groups. The carbon–mercury structure can undergo spontaneous replacement of the mercury by hydrogen, rather than persisting until a separate reduction step. In this manner, the effect is for mercury to be a Lewis acid catalyst. For example, using an alkyne instead of an alkene yields an enol, which tautomerizes into a ketone. Using an alcohol instead of water yields an ether (see also Hofmann-Sand reaction). In both cases, Markovnikov's rule is observed.

Other applications of oxymercuration

Using a vinyl ether in the presence of an alcohol allows the replacement of one alkoxy group (RO–) for another by way of an acetal intermediate. An allyl alcohol and a vinyl ether under the conditions of oxymercuration–reaction can give R–CH=CH–CH2–O–CH=CH2, which is suitable for a Claisen rearrangement.[8]

Mercury-catalyzed enol ether exchange
Mechanism mercury-catalyzed enol ether exchange

See also

[edit]
  • Hydroboration–oxidation reaction
  • Mukaiyama hydration

References

[edit]
  1. ^ Organic Syntheses OS 6:766 Link
  2. ^ Loudon, Marc G. (2002). "Addition Reactions of Alkenes". Organic Chemistry (fourth ed.). Oxford University Press. pp. 165–168.
  3. ^ McGraw-Hill Higher Education (2000). Oxymercuration–Demercuration of Alkenes.
  4. ^ Andreas Schleifenbaum (2001). "Oxymercuration". Reaktionen, Reagenzien und Prinzipien. Archived from the original on 29 August 2004.
  5. ^ Pasto, D. J.; Gontarz, J. A. "Studies on the Mechanism of the Oxymercuration of Substituted Cyclohexenes". Journal of the American Chemical Society (1971), 93, pp 6902–6908.
  6. ^ Whitesides, George M.; San Filippo, Joseph Jr. (1970). "Mechanism of reduction of alkylmercuric halides by metal hydrides". J. Am. Chem. Soc. 92 (22): 6611–6624. Bibcode:1970JAChS..92.6611W. doi:10.1021/ja00725a039.
  7. ^ Bordwell, Frederick G.; Douglass, Miriam L. "Reduction of Alkylmercuric Hydroxides by Sodium Borohydride". Journal of the American Chemical Society (1966), 88, pp 993–99.
  8. ^ McMurry, J. E.; Andrus A.; Ksander G. M.; Muesser, J. H.; Johnson, M. A. "Stereospecific Total Synthesis of Aphidicolin.". Journal of the American Chemical Society (1979), 101, pp 1330–32.

[1]

  • v
  • t
  • e
Alkenes
Alkenes
  • Ethene (C2H4)
  • Propene (C3H6)
  • Butene (C4H8)
  • Pentene (C5H10)
  • Hexene (C6H12)
  • Heptene (C7H14)
  • Octene (C8H16)
  • Nonene (C9H18)
  • Decene (C10H20)
  • Polyenes
Preparations
  • Dehydrohalogenation from haloalkane
  • Dehydration reaction from alcohol
  • Semihydrogenation from alkyne
  • Bamford–Stevens reaction
  • Barton–Kellogg reaction
  • Boord olefin synthesis
  • Chugaev elimination
  • Cope reaction
  • Corey–Winter olefin synthesis
  • Grieco elimination
  • Hofmann elimination
  • Horner–Wadsworth–Emmons reaction
  • Hydrazone iodination
  • Julia olefination
  • Kauffmann olefination
  • McMurry reaction
  • Peterson olefination
  • Ramberg–Bäcklund reaction
  • Shapiro reaction
  • Takai olefination
  • Wittig reaction
  • Olefin metathesis
  • Ene reaction
  • Cope rearrangement
Reactions
  • Hydrogenation
  • Halogenation
  • Hydration
  • Electrophilic addition
  • Oxymercuration reaction
  • Hydroboration
  • Cyclopropanation
  • Epoxidation
  • Dihydroxylation
  • Ozonolysis
  • Hydrohalogenation
  • Polymerization
  • Diels–Alder reaction
  • Wacker process
  • Dehydrogenation
  • Ene reaction
  • Friedel-Crafts Alkylation
  • v
  • t
  • e
Topics in organic reactions
  • Addition reaction
  • Elimination reaction
  • Polymerization
  • Reagents
  • Rearrangement reaction
  • Redox reaction
  • Regioselectivity
  • Stereoselectivity
  • Stereospecificity
  • Substitution reaction
  • A value
  • Alpha effect
  • Annulene
  • Anomeric effect
  • Antiaromaticity
  • Aromatic ring current
  • Aromaticity
  • Baird's rule
  • Baker–Nathan effect
  • Baldwin's rules
  • Bema Hapothle
  • Beta-silicon effect
  • Bicycloaromaticity
  • Bredt's rule
  • Bürgi–Dunitz angle
  • Catalytic resonance theory
  • Charge remote fragmentation
  • Charge-transfer complex
  • Clar's rule
  • Conformational isomerism
  • Conjugated system
  • Conrotatory and disrotatory
  • Curtin–Hammett principle
  • Dynamic binding (chemistry)
  • Edwards equation
  • Effective molarity
  • Electromeric effect
  • Electron-rich
  • Electron-withdrawing group
  • Electronic effect
  • Electrophile
  • Evelyn effect
  • Flippin–Lodge angle
  • Free-energy relationship
  • Grunwald–Winstein equation
  • Hammett acidity function
  • Hammett equation
  • George S. Hammond
  • Hammond's postulate
  • Homoaromaticity
  • Hückel's rule
  • Hyperconjugation
  • Inductive effect
  • Kinetic isotope effect
  • LFER solvent coefficients (data page)
  • Marcus theory
  • Markovnikov's rule
  • Möbius aromaticity
  • Möbius–Hückel concept
  • More O'Ferrall–Jencks plot
  • Negative hyperconjugation
  • Neighbouring group participation
  • 2-Norbornyl cation
  • Nucleophile
  • Kennedy J. P. Orton
  • Passive binding
  • Phosphaethynolate
  • Polar effect
  • Polyfluorene
  • Ring strain
  • Σ-aromaticity
  • Spherical aromaticity
  • Spiroaromaticity
  • Steric effects
  • Superaromaticity
  • Swain–Lupton equation
  • Taft equation
  • Thorpe–Ingold effect
  • Vinylogy
  • Walsh diagram
  • Woodward–Hoffmann rules
  • Woodward's rules
  • Y-aromaticity
  • Yukawa–Tsuno equation
  • Zaitsev's rule
  • Σ-bishomoaromaticity
List of organic reactions
Carbon-carbon bond forming reactions
  • Acetoacetic ester synthesis
  • Acyloin condensation
  • Aldol condensation
  • Aldol reaction
  • Alkane metathesis
  • Alkyne metathesis
  • Alkyne trimerisation
  • Alkynylation
  • Allan–Robinson reaction
  • Arndt–Eistert reaction
  • Auwers synthesis
  • Aza-Baylis–Hillman reaction
  • Barbier reaction
  • Barton–Kellogg reaction
  • Baylis–Hillman reaction
  • Benary reaction
  • Bergman cyclization
  • Biginelli reaction
  • Bingel reaction
  • Blaise ketone synthesis
  • Blaise reaction
  • Blanc chloromethylation
  • Bodroux–Chichibabin aldehyde synthesis
  • Bouveault aldehyde synthesis
  • Bucherer–Bergs reaction
  • Buchner ring expansion
  • Cadiot–Chodkiewicz coupling
  • Carbonyl allylation
  • Carbonyl olefin metathesis
  • Castro–Stephens coupling
  • Chan rearrangement
  • Chan–Lam coupling
  • Claisen condensation
  • Claisen rearrangement
  • Claisen-Schmidt condensation
  • Combes quinoline synthesis
  • Corey–Fuchs reaction
  • Corey–House synthesis
  • Coupling reaction
  • Cross-coupling reaction
  • Cross dehydrogenative coupling
  • Cross-coupling partner
  • Dakin–West reaction
  • Darzens reaction
  • Diels–Alder reaction
  • Doebner reaction
  • Wulff–Dötz reaction
  • Ene reaction
  • Enyne metathesis
  • Ethenolysis
  • Favorskii reaction
  • Ferrier carbocyclization
  • Friedel–Crafts reaction
  • Fujimoto–Belleau reaction
  • Fujiwara–Moritani reaction
  • Fukuyama coupling
  • Gabriel–Colman rearrangement
  • Gattermann reaction
  • Glaser coupling
  • Grignard reaction
  • Grignard reagent
  • Hammick reaction
  • Heck reaction
  • Henry reaction
  • Heterogeneous metal catalyzed cross-coupling
  • High dilution principle
  • Hiyama coupling
  • Homologation reaction
  • Horner–Wadsworth–Emmons reaction
  • Hydrocyanation
  • Hydrovinylation
  • Hydroxymethylation
  • Ivanov reaction
  • Johnson–Corey–Chaykovsky reaction
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • Knoevenagel condensation
  • Knorr pyrrole synthesis
  • Kolbe–Schmitt reaction
  • Kowalski ester homologation
  • Kulinkovich reaction
  • Kumada coupling
  • Liebeskind–Srogl coupling
  • Malonic ester synthesis
  • Mannich reaction
  • McMurry reaction
  • Meerwein arylation
  • Methylenation
  • Michael reaction
  • Minisci reaction
  • Mizoroki-Heck vs. Reductive Heck
  • Nef isocyanide reaction
  • Nef synthesis
  • Negishi coupling
  • Nierenstein reaction
  • Nitro-Mannich reaction
  • Nozaki–Hiyama–Kishi reaction
  • Olefin conversion technology
  • Olefin metathesis
  • Palladium–NHC complex
  • Passerini reaction
  • Peterson olefination
  • Pfitzinger reaction
  • Piancatelli rearrangement
  • Pinacol coupling reaction
  • Prins reaction
  • Quelet reaction
  • Ramberg–Bäcklund reaction
  • Rauhut–Currier reaction
  • Reformatsky reaction
  • Reimer–Tiemann reaction
  • Rieche formylation
  • Ring-closing metathesis
  • Robinson annulation
  • Sakurai reaction
  • Seyferth–Gilbert homologation
  • Shapiro reaction
  • Sonogashira coupling
  • Stetter reaction
  • Stille reaction
  • Stollé synthesis
  • Stork enamine alkylation
  • Suzuki reaction
  • Takai olefination
  • Thermal rearrangement of aromatic hydrocarbons
  • Thorpe reaction
  • Ugi reaction
  • Ullmann reaction
  • Wagner-Jauregg reaction
  • Weinreb ketone synthesis
  • Wittig reaction
  • Wurtz reaction
  • Wurtz–Fittig reaction
  • Zincke–Suhl reaction
Homologation reactions
  • Arndt–Eistert reaction
  • Hooker reaction
  • Kiliani–Fischer synthesis
  • Kowalski ester homologation
  • Methoxymethylenetriphenylphosphorane
  • Seyferth–Gilbert homologation
  • Wittig reaction
Olefination reactions
  • Bamford–Stevens reaction
  • Barton–Kellogg reaction
  • Boord olefin synthesis
  • Chugaev elimination
  • Cope reaction
  • Corey–Winter olefin synthesis
  • Dehydrohalogenation
  • Elimination reaction
  • Grieco elimination
  • Hofmann elimination
  • Horner–Wadsworth–Emmons reaction
  • Hydrazone iodination
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • McMurry reaction
  • Peterson olefination
  • Ramberg–Bäcklund reaction
  • Shapiro reaction
  • Takai olefination
  • Wittig reaction
Carbon-heteroatom bond forming reactions
  • Azo coupling
  • Bartoli indole synthesis
  • Boudouard reaction
  • Cadogan–Sundberg indole synthesis
  • Diazonium compound
  • Esterification
  • Grignard reagent
  • Haloform reaction
  • Hegedus indole synthesis
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Kharasch–Sosnovsky reaction
  • Knorr pyrrole synthesis
  • Leimgruber–Batcho indole synthesis
  • Mukaiyama hydration
  • Nenitzescu indole synthesis
  • Oxymercuration reaction
  • Reed reaction
  • Schotten–Baumann reaction
  • Ullmann condensation
  • Williamson ether synthesis
  • Yamaguchi esterification
Degradation reactions
  • Barbier–Wieland degradation
  • Bergmann degradation
  • Edman degradation
  • Emde degradation
  • Gallagher–Hollander degradation
  • Hofmann rearrangement
  • Hooker reaction
  • Isosaccharinic acid
  • Marker degradation
  • Ruff degradation
  • Strecker degradation
  • Von Braun amide degradation
  • Weerman degradation
  • Wohl degradation
Organic redox reactions
  • Acyloin condensation
  • Adkins–Peterson reaction
  • Akabori amino-acid reaction
  • Alcohol oxidation
  • Algar–Flynn–Oyamada reaction
  • Amide reduction
  • Andrussow process
  • Angeli–Rimini reaction
  • Aromatization
  • Autoxidation
  • Baeyer–Villiger oxidation
  • Barton–McCombie deoxygenation
  • Bechamp reduction
  • Benkeser reaction
  • Bergmann degradation
  • Birch reduction
  • Bohn–Schmidt reaction
  • Bosch reaction
  • Bouveault–Blanc reduction
  • Boyland–Sims oxidation
  • Cannizzaro reaction
  • Carbonyl reduction
  • Clemmensen reduction
  • Collins oxidation
  • Corey–Itsuno reduction
  • Corey–Kim oxidation
  • Corey–Winter olefin synthesis
  • Criegee oxidation
  • Dakin oxidation
  • Davis oxidation
  • Deoxygenation
  • Dess–Martin oxidation
  • DNA oxidation
  • Elbs persulfate oxidation
  • Emde degradation
  • Eschweiler–Clarke reaction
  • Étard reaction
  • Fischer–Tropsch process
  • Fleming–Tamao oxidation
  • Fukuyama reduction
  • Ganem oxidation
  • Glycol cleavage
  • Griesbaum coozonolysis
  • Grundmann aldehyde synthesis
  • Haloform reaction
  • Hydrogenation
  • Hydrogenolysis
  • Hydroxylation
  • Jones oxidation
  • Kiliani–Fischer synthesis
  • Kolbe electrolysis
  • Kornblum oxidation
  • Kornblum–DeLaMare rearrangement
  • Leuckart reaction
  • Ley oxidation
  • Lindgren oxidation
  • Lipid peroxidation
  • Lombardo methylenation
  • Luche reduction
  • Markó–Lam deoxygenation
  • McFadyen–Stevens reaction
  • Meerwein–Ponndorf–Verley reduction
  • Methionine sulfoxide
  • Miyaura borylation
  • Mozingo reduction
  • Noyori asymmetric hydrogenation
  • Omega oxidation
  • Oppenauer oxidation
  • Oxygen rebound mechanism
  • Ozonolysis
  • Parikh–Doering oxidation
  • Pinnick oxidation
  • Prévost reaction
  • Reduction of nitro compounds
  • Reductive amination
  • Riley oxidation
  • Rosenmund reduction
  • Rubottom oxidation
  • Sabatier reaction
  • Sarett oxidation
  • Selenoxide elimination
  • Shapiro reaction
  • Sharpless asymmetric dihydroxylation
  • Epoxidation of allylic alcohols
  • Sharpless epoxidation
  • Sharpless oxyamination
  • Stahl oxidation
  • Staudinger reaction
  • Stephen aldehyde synthesis
  • Swern oxidation
  • Transfer hydrogenation
  • Wacker process
  • Wharton reaction
  • Whiting reaction
  • Wohl–Aue reaction
  • Wolff–Kishner reduction
  • Wolffenstein–Böters reaction
  • Zinin reaction
Rearrangement reactions
  • 1,2-rearrangement
  • 1,2-Wittig rearrangement
  • 2,3-sigmatropic rearrangement
  • 2,3-Wittig rearrangement
  • Achmatowicz reaction
  • Alkyne zipper reaction
  • Allen–Millar–Trippett rearrangement
  • Allylic rearrangement
  • Alpha-ketol rearrangement
  • Amadori rearrangement
  • Arndt–Eistert reaction
  • Aza-Cope rearrangement
  • Baker–Venkataraman rearrangement
  • Bamberger rearrangement
  • Banert cascade
  • Beckmann rearrangement
  • Benzilic acid rearrangement
  • Bergman cyclization
  • Bergmann degradation
  • Boekelheide reaction
  • Brook rearrangement
  • Buchner ring expansion
  • Carroll rearrangement
  • Chan rearrangement
  • Claisen rearrangement
  • Cope rearrangement
  • Corey–Fuchs reaction
  • Cornforth rearrangement
  • Criegee rearrangement
  • Curtius rearrangement
  • Demjanov rearrangement
  • Di-π-methane rearrangement
  • Dimroth rearrangement
  • Divinylcyclopropane-cycloheptadiene rearrangement
  • Dowd–Beckwith ring-expansion reaction
  • Electrocyclic reaction
  • Ene reaction
  • Enyne metathesis
  • Favorskii reaction
  • Favorskii rearrangement
  • Ferrier carbocyclization
  • Ferrier rearrangement
  • Fischer–Hepp rearrangement
  • Fries rearrangement
  • Fritsch–Buttenberg–Wiechell rearrangement
  • Gabriel–Colman rearrangement
  • Group transfer reaction
  • Halogen dance rearrangement
  • Hayashi rearrangement
  • Hofmann rearrangement
  • Hofmann–Martius rearrangement
  • Ireland–Claisen rearrangement
  • Jacobsen rearrangement
  • Kornblum–DeLaMare rearrangement
  • Kowalski ester homologation
  • Lobry de Bruyn–Van Ekenstein transformation
  • Lossen rearrangement
  • McFadyen–Stevens reaction
  • McLafferty rearrangement
  • Meyer–Schuster rearrangement
  • Mislow–Evans rearrangement
  • Mumm rearrangement
  • Myers allene synthesis
  • Nazarov cyclization reaction
  • Neber rearrangement
  • Newman–Kwart rearrangement
  • Overman rearrangement
  • Oxy-Cope rearrangement
  • Pericyclic reaction
  • Piancatelli rearrangement
  • Pinacol rearrangement
  • Pummerer rearrangement
  • Ramberg–Bäcklund reaction
  • Ring expansion and contraction
  • Ring-closing metathesis
  • Rupe reaction
  • Schmidt reaction
  • Semipinacol rearrangement
  • Seyferth–Gilbert homologation
  • Sigmatropic reaction
  • Skattebøl rearrangement
  • Smiles rearrangement
  • Sommelet–Hauser rearrangement
  • Stevens rearrangement
  • Stieglitz rearrangement
  • Thermal rearrangement of aromatic hydrocarbons
  • Tiffeneau–Demjanov rearrangement
  • Vinylcyclopropane rearrangement
  • Wagner–Meerwein rearrangement
  • Wallach rearrangement
  • Weerman degradation
  • Westphalen–Lettré rearrangement
  • Willgerodt rearrangement
  • Wolff rearrangement
Ring forming reactions
  • 1,3-Dipolar cycloaddition
  • Annulation
  • Azide-alkyne Huisgen cycloaddition
  • Baeyer–Emmerling indole synthesis
  • Bartoli indole synthesis
  • Bergman cyclization
  • Biginelli reaction
  • Bischler–Möhlau indole synthesis
  • Bischler–Napieralski reaction
  • Blum–Ittah aziridine synthesis
  • Bobbitt reaction
  • Bohlmann–Rahtz pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Cadogan–Sundberg indole synthesis
  • Camps quinoline synthesis
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Cycloaddition
  • Darzens reaction
  • Davis–Beirut reaction
  • De Kimpe aziridine synthesis
  • Debus–Radziszewski imidazole synthesis
  • Dieckmann condensation
  • Diels–Alder reaction
  • Feist–Benary synthesis
  • Ferrario–Ackermann reaction
  • Fiesselmann thiophene synthesis
  • Fischer indole synthesis
  • Fischer oxazole synthesis
  • Friedländer synthesis
  • Gewald reaction
  • Graham reaction
  • Hantzsch pyridine synthesis
  • Hegedus indole synthesis
  • Hemetsberger indole synthesis
  • Hofmann–Löffler reaction
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Iodolactonization
  • Isay reaction
  • Jacobsen epoxidation
  • Johnson–Corey–Chaykovsky reaction
  • Knorr pyrrole synthesis
  • Knorr quinoline synthesis
  • Kröhnke pyridine synthesis
  • Kulinkovich reaction
  • Larock indole synthesis
  • Madelung synthesis
  • Nazarov cyclization reaction
  • Nenitzescu indole synthesis
  • Niementowski quinazoline synthesis
  • Niementowski quinoline synthesis
  • Paal–Knorr synthesis
  • Paternò–Büchi reaction
  • Pechmann condensation
  • Petrenko-Kritschenko piperidone synthesis
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Pschorr cyclization
  • Reissert indole synthesis
  • Ring-closing metathesis
  • Robinson annulation
  • Sharpless epoxidation
  • Simmons–Smith reaction
  • Skraup reaction
  • Urech hydantoin synthesis
  • Van Leusen reaction
  • Wenker synthesis
Cycloaddition
  • 1,3-Dipolar cycloaddition
  • 4+4 Photocycloaddition
  • (4+3) cycloaddition
  • 6+4 Cycloaddition
  • Alkyne trimerisation
  • Aza-Diels–Alder reaction
  • Azide-alkyne Huisgen cycloaddition
  • Bradsher cycloaddition
  • Cheletropic reaction
  • Conia-ene reaction
  • Cyclopropanation
  • Diazoalkane 1,3-dipolar cycloaddition
  • Diels–Alder reaction
  • Enone–alkene cycloadditions
  • Hexadehydro Diels–Alder reaction
  • Intramolecular Diels–Alder cycloaddition
  • Inverse electron-demand Diels–Alder reaction
  • Ketene cycloaddition
  • McCormack reaction
  • Metal-centered cycloaddition reactions
  • Nitrone-olefin (3+2) cycloaddition
  • Oxo-Diels–Alder reaction
  • Ozonolysis
  • Pauson–Khand reaction
  • Povarov reaction
  • Prato reaction
  • Retro-Diels–Alder reaction
  • Staudinger synthesis
  • Trimethylenemethane cycloaddition
  • Vinylcyclopropane (5+2) cycloaddition
  • Wagner-Jauregg reaction
Heterocycle forming reactions
  • Algar–Flynn–Oyamada reaction
  • Allan–Robinson reaction
  • Auwers synthesis
  • Bamberger triazine synthesis
  • Banert cascade
  • Barton–Zard reaction
  • Bernthsen acridine synthesis
  • Bischler–Napieralski reaction
  • Bobbitt reaction
  • Boger pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Diazoalkane 1,3-dipolar cycloaddition
  • Einhorn–Brunner reaction
  • Erlenmeyer–Plöchl azlactone and amino-acid synthesis
  • Feist–Benary synthesis
  • Fischer oxazole synthesis
  • Gabriel–Colman rearrangement
  • Gewald reaction
  • Hantzsch ester
  • Hantzsch pyridine synthesis
  • Herz reaction
  • Knorr pyrrole synthesis
  • Kröhnke pyridine synthesis
  • Lectka enantioselective beta-lactam synthesis
  • Lehmstedt–Tanasescu reaction
  • Niementowski quinazoline synthesis
  • Nitrone-olefin (3+2) cycloaddition
  • Paal–Knorr synthesis
  • Pellizzari reaction
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Robinson–Gabriel synthesis
  • Stollé synthesis
  • Urech hydantoin synthesis
  • Wenker synthesis
  • Wohl–Aue reaction
  1. ^ Ambidge, I. C.; Dwight, Stephen K.; Rynard, Carolyn M.; Tidwell, Thomas T. (September 1977). "Structural effects on reactivity in the oxymercuration reaction". Canadian Journal of Chemistry. 55 (17): 3086–3095. doi:10.1139/v77-433. ISSN 0008-4042.

Từ khóa » Hg Oac 2 H20 Nabh4