Phương Pháp Giải Và Biện Luận Phương Trình Bậc Hai Cực Hay

Phương pháp giải và biện luận phương trình bậc hai (cực hay)
  • Siêu sale sách Toán - Văn - Anh Vietjack 15-01 trên Shopee mall
Trang trước Trang sau

Bài viết Phương pháp giải và biện luận phương trình bậc hai với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp giải và biện luận phương trình bậc hai.

  • Lý thuyết và cách giải bài tập giải và biện luận phương trình bậc hai
  • Ví dụ minh họa bài tập giải và biện luận phương trình bậc hai
  • Bài tập tự luyện giải và biện luận phương trình bậc hai

Phương pháp giải và biện luận phương trình bậc hai (cực hay)

Quảng cáo

Lý thuyết & Phương pháp giải

Giải và biện luận phương trình bậc hai ax2 + bx + c = 0

Bước 1. Biến đổi phương trình về đúng dạng ax2 + bx + c = 0

Bước 2. Nếu hệ số a chứa tham số, ta xét 2 trường hợp:

- Trường hợp 1: a = 0, ta giải và biện luận ax + b = 0.

- Trường hợp 2: a ≠ 0. Ta lập Δ = b2 - 4ac. Khi đó:

+ Nếu Δ > 0 thì phương trình có 2 nghiệm phân biệt Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

+ Nếu Δ = 0 thì phương trình có 1 nghiệm (kép): x = -b/2a

+ Nếu Δ < 0 thì phương trình vô nghiệm.

Bước 3. Kết luận.

Lưu ý:

- Phương trình ax2 + bx + c = 0 có nghiệm Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

- Phương trình ax2 + bx + c = 0 có nghiệm duy nhất Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ví dụ minh họa

Bài 1: Phương trình (m–1)x2 + 3x – 1 = 0. Phương trình có nghiệm khi:

Lời giải:

Với m = 1, phương trình trở thành 3x - 1 = 0 ⇔ x = 1/3

Do đó m = 1 thỏa mãn.

Với m ≠ 1, ta có Δ = 9 + 4(m-1) = 4m + 5

Phương trình có nghiệm khi Δ ≥ 0

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hợp hai trường hợp ta được m ≥ -5/4 là giá trị cần tìm

Quảng cáo

Bài 2: Phương trình (x2 - 3x + m)(x - 1) = 0 có 3 nghiệm phân biệt khi:

Lời giải:

Phương trình (x2 - 3x + m)(x - 1) = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình (1) có 3 nghiệm phân biệt

⇔ Phương trình (2) có hai nghiệm phân biệt khác 1

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 3: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10; 10] để phương trình mx2 - mx + 1 = 0 có nghiệm.

Lời giải:

Nếu m = 0 thì phương trình trở thành 1 = 0: vô nghiệm.

Khi m ≠ 0, phương trình đã cho có nghiệm khi và chỉ khi

Δ = m2 - 4m ≥ 0Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Kết hợp điều kiện m ≠ 0, ta đượcToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vì ∈ Z, m ∈ [-10;10] m ∈ {-10; -9; -8;...; -1} ∪ {4; 5; 6;...; 10}

Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán

Bài 4: Tìm tất cả các giá trị thực của tham số m để hai đồ thị hàm số y = -x2 - 2x + 3 và y = x2 - m có điểm chung

Lời giải:

Phương trình hoành độ giao điểm -x2 - 2x + 3 = x2 - m

⇔ 2x2 + 2x - m - 3 = 0. (*)

Để hai đồ thị hàm số có điểm chung khi và chỉ khi phương trình (*) có nghiệm

⇔ Δ' = 1 - 2(-m-3) ≥ 0 ⇔ m ≥ -7/2

Quảng cáo

Bài 5: Tìm giá trị thực của tham số m để đường thẳng d: y = 2x + m tiếp xúc với parabol (P): y = (m–1)x2 + 2mx + 3m – 1

Lời giải:

Phương trình hoành độ giao điểm (m-1)x2 + 2mx + 3m - 1 = 2x + m

⇔ (m-1)x2 + 2(m-1)x + 2m - 1 = 0 (*)

Để d tiếp xúc với (P) khi và chỉ khi phương trình (*) có nghiệm kép

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài tập tự luyện

Bài 1. Giải và biện luận phương trình bậc hai theo tham số m sau:

x2−23m−1x+9m2−6m−8=0.

Hướng dẫn giải

Ta có Δ'=b'2−ac=3m−12−1.9m2−6m−8=9>0.

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

Bài 2. Giải và biện luận phương trình bậc hai theo tham số m sau:

3x2−mx+9m2+m2=0.

Hướng dẫn giải

Ta có Δ=b2−ac=−m2−4.3.m2=−11m2≤0

+ Trường hợp Δ = 0 ⇔−11m2=0⇔m=0

Phương trình có nghiệm kép x=02.3=0.

+ Trường hợp Δ < 0 nên phương trình vô nghiệm.

Bài 3. Tìm m để phương trình sau có hai nghiệm phân biệt:

mx2−2m−1x+m+1=0.

Hướng dẫn giải

Phương trình trên có 2 nghiệm phân biệt khi m≠0Δ'>0

Ta có Δ'=b'2−ac=m−12−m.m+1=−3m+1

Δ'>0⇔−3m+1>0⇔m<13.

Vậy phương trình trên có hai nghiệm phân biệt khi m≠0m<13.

Bài 4. Giải và biện luận phương trình bậc hai theo tham số m sau:

m−1x2−2mx+m+2=0.

Hướng dẫn giải

+) Trường hợp m = 1 nghĩa là a = 0

Ta có m−1x2−2mx+m+2=0

-2x + 3 = 0

x=32

+) Trường hợp m ≠ 1 nghĩa là a ≠ 0.

Ta có Δ'=b'2−ac=m2−m−1.m+2=−m+2

• Δ'=0 hay -m + 2 = 0 hay m = 2 thì phương trình có nghiệm kép.

• Δ'>0 hay -m + 2 > 0 hay m > 2 thì phương trình có 2 nghiệm phân biệt.

• Δ'<0 hay -m + 2 < 0 hay m < 2 thì phương trình vô nghiệm.

Bài 5. Giải và biện luận phương trình bậc 2 theo tham số m sau:

x2−2m−4x+m2=0.

Hướng dẫn giải

Ta có Δ'=b'2−ac=m−42−1.m2=−8m+16.

Xét các trường hợp của ∆’, ta có:

• Δ'=0 hay -8m + 16 = 0 hay m = 2 thì phương trình có nghiệm kép.

• Δ'>0 hay -8m + 16 > 0 hay m > 2 thì phương trình có 2 nghiệm phân biệt.

• Δ'<0 hay -8m + 16 < 0 hay m < 2 thì phương trình vô nghiệm.

Bài 6. Giải và biện luận phương trình bậc 2 theo tham số m sau:

m−1x2−3mx+2m+1=0.

Bài 7. Giải và biện luận phương trình bậc 2 theo tham số m sau:

mx2−2m2x+1=0.

Bài 8. Giải và biện luận phương trình bậc 2 theo tham số m sau:

2m−7x2+22m+5x−14m+1=0.

Bài 9. Giải và biện luận phương trình bậc 2 theo tham số m sau:

x2−mx+3m+1=0.

Bài 10. Giải và biện luận phương trình bậc 2 theo tham số m sau:

m−3x2−5mx+3m−2=0.

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

  • Nghiệm của phương trình bậc hai
  • Bài tập về nghiệm của phương trình bậc hai
  • Phương trình chứa ẩn trong dấu giá trị tuyệt đối
  • Bài tập phương trình chứa ẩn trong dấu giá trị tuyệt đối

Lời giải bài tập lớp 10 sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau phuong-trinh-he-phuong-trinh.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » Công Thức Phương Trình Bậc 2 Lớp 10