Toán 10 Bài 2: Phương Trình Quy Về Phương Trình Bậc Nhất, Bậc Hai

DẠNG TOÁN 1: PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU GIÁ TRỊ TUYỆT ĐỐI

Phương pháp giải

  • Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối(GTTĐ) ta tìm cách để khử dấu GTTĐ, bằng cách:

– Dùng định nghĩa hoặc tính chất của GTTĐ.

– Bình phương hai vế.

– Đặt ẩn phụ.

  • Phương trình dạng \(\left| {f(x)} \right| = \left| {g(x)} \right|\) ta có thể giải bằng cách biến đổi tương đương như sau

\(\left| {f(x)} \right| = \left| {g(x)} \right| \Leftrightarrow \left[ \begin{array}{l}f(x) = g(x)\\f(x) = - g(x)\end{array} \right.\) hoặc \(\left| {f(x)} \right| = \left| {g(x)} \right| \Leftrightarrow {f^2}(x) = {g^2}(x)\)

  • Đối với phương trình dạng \(\left| {f(x)} \right| = g(x)\)(*) ta có thể biến đổi tương đương như sau

\(\left| {f(x)} \right| = g(x) \Leftrightarrow \left\{ \begin{array}{l}g(x) \ge 0\\{f^2}(x) = {g^2}(x)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}g(x) \ge 0\\\left[ \begin{array}{l}f(x) = g(x)\\f(x) = - g(x)\end{array} \right.\end{array} \right.\)

Hoặc \(\left| {f(x)} \right| = g(x) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{f(x) = g(x)}\\{f(x) \ge 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{ - f(x) = g(x)}\\{f(x) < 0}\end{array}} \right.}\end{array}} \right.\)

Ví dụ:

Giải các phương trình sau:

a) \(\left| {2x + 1} \right| = \left| {{x^2} - 3x - 4} \right|\).

b) \(\left| {3x - 2} \right| = 3 - 2x\)

c) \(\left| {{x^2} - 4x - 5} \right| = 4x - 17\)

d) \(\left| {2x - 5} \right| + \left| {2{x^2} - 7x + 5} \right| = 0\)

Lời giải:

a) Phương trình \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + 1 = {x^2} - 3x - 4}\\{2x + 1 = - \left( {{x^2} - 3x - 4} \right)}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x^2} - 5x - 5 = 0}\\{{x^2} - x - 3 = 0}\end{array}} \right.\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{5 \pm \sqrt {45} }}{2}}\\{x = \frac{{1 \pm \sqrt {13} }}{2}}\end{array}} \right.\)

Vậy phương trình có nghiệm là \(x = \frac{{5 \pm \sqrt {45} }}{2}\) và \(\frac{{1 \pm \sqrt {13} }}{2}\).

b) Cách 1: Với \(3 - 2x < 0 \Leftrightarrow x > \frac{3}{2}\) ta có \(VT \ge 0,\,\,VP < 0\) suy ra phương trình vô nghiệm

Với \(3 - 2x \ge 0 \Leftrightarrow x \le \frac{3}{2}\) khi đó hai vế của phương trình không âm suy ra

Phương trình \( \Leftrightarrow {\left| {3x - 2} \right|^2} = {\left( {3 - 2x} \right)^2} \Leftrightarrow 9{x^2} - 12x + 4 = 4{x^2} - 12x + 9\)

\( \Leftrightarrow 5{x^2} = 5 \Leftrightarrow x = \pm 1\) (thỏa mãn)

Vậy phương trình có nghiệm là \(x = \pm 1\) .

Cách 2: Với \(3x - 2 \ge 0 \Leftrightarrow x \ge \frac{2}{3}\) : Phương trình tương đương với

\(3{\rm{x}} - 2 = 3 - 2{\rm{x}} \Leftrightarrow 5{\rm{x}} = 5 \Leftrightarrow x = 1\) (thỏa mãn)

Với \(3x - 2 < 0 \Leftrightarrow x < \frac{2}{3}\): Phương trình tương đương với

\( - \left( {3{\rm{x}} - 2} \right) = 3 - 2{\rm{x}} \Leftrightarrow {\rm{x}} = - 1\) (thỏa mãn)

Vậy phương trình có nghiệm là \(x = \pm 1\) .

c) Với \(4x - 17 < 0 \Leftrightarrow x < \frac{{17}}{4}\) ta có \(VT \ge 0,\,\,VP < 0\) suy ra phương trình vô nghiệm

Với \(4x - 17 \ge 0 \Leftrightarrow x \ge \frac{{17}}{4}\) khi đó hai vế của phương trình không âm suy ra

Phương trình \( \Leftrightarrow {\left| {{x^2} - 4x - 5} \right|^2} = {\left( {4x - 17} \right)^2} \Leftrightarrow {\left( {{x^2} - 4x - 5} \right)^2} = {\left( {4x - 17} \right)^2}\)

\( \Leftrightarrow \left( {{x^2} - 8x + 12} \right)\left( {{x^2} - 22} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x^2} - 8x + 12 = 0}\\{{x^2} - 22 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 6}\end{array}} \right.}\\{x = \pm \sqrt {22} }\end{array}} \right.\)

Đối chiếu với điều kiện \(x \ge \frac{{17}}{4}\) thấy chỉ có \(x = 6\) và \(x = \sqrt {22} \) thỏa mãn

Vậy phương trình có nghiệm là \(x = 6\) và \(x = \sqrt {22} \).

d) Ta có \(\left| {2x - 5} \right| \ge 0,\,\,\left| {2{x^2} - 7x + 5} \right| \ge 0\) suy ra

\(\left| {2x - 5} \right| + \left| {2{x^2} - 7x + 5} \right| \ge 0\).

Dấu bằng xảy ra khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}}{2x - 5 = 0}\\{2{x^2} - 7x + 5 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{5}{2}}\\{\left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = \frac{5}{2}}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x = \frac{5}{2}\) .

Vậy phương trình có nghiệm là \(x = \frac{5}{2}\) .

DẠNG TOÁN 2: PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Phương pháp giải

Để giải phương trình chứa ẩn ở mẫu ta thường

- Quy đồng mẫu số (chú ý cần đặt điều kiện mẫu số khác không)

- Đặt ẩn phụ

Ví dụ:

Tìm số nghiệm của các phương trình sau

a) \(\frac{{2x + 1}}{{3x + 2}} = \frac{{x + 1}}{{x - 2}}\)

b) \(1 + \frac{2}{{x - 2}} = \frac{{10}}{{x + 3}} - \frac{{50}}{{(2 - x)(x + 3)}}\).

c) \(\frac{{x + 3}}{{{{(x + 1)}^2}}} = \frac{{4x - 2}}{{{{(2x - 1)}^2}}}\).

d) \(\frac{{x + 1}}{{x + 2}} + \frac{{x - 1}}{{x - 2}} = \frac{{2x + 1}}{{x + 1}}\)

Lời giải:

a) ĐKXĐ: \(x \ne - \frac{2}{3}\) và \(x \ne 2\) .

Phương trình tương đương với \(\left( {2x + 1} \right)\left( {x - 2} \right) = \left( {x + 1} \right)\left( {3x + 2} \right) \Leftrightarrow 2{x^2} - 4x + x - 2 = 3{x^2} + 2x + 3x + 2\)

\( \Leftrightarrow {x^2} + 8x + 4 = 0 \Leftrightarrow x = - 4 \pm 2\sqrt 3 \) (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là \(x = - 4 \pm 2\sqrt 3 \).

b) ĐKXĐ: \(x \ne - 3\) và \(x \ne 2\) .

Phương trình tương đương với \(\left( {2 - x} \right)\left( {x + 3} \right) - 2\left( {x + 3} \right) = 10\left( {2 - x} \right) - 50\)

\( \Leftrightarrow {x^2} - 7x - 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 10}\\{x = - 3}\end{array}} \right.\)

Đối chiếu với điều kiện ta có nghiệm của phương trình là \(x = 10\) .

c) ĐKXĐ: \(x \ne - 1\) và \(x \ne \frac{1}{2}\) .

Phương trình tương đương với

\(\frac{{x + 3}}{{{{(x + 1)}^2}}} = \frac{2}{{2x - 1}} \Leftrightarrow \left( {x + 3} \right)\left( {2x - 1} \right) = 2{\left( {x + 1} \right)^2}\)

\( \Leftrightarrow x = 5\) (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là \(x = 5\) .

d) ĐKXĐ: \(x \ne \pm 2\) và \(x \ne - 1\)

Phương trình tương đương với

\({\left( {x + 1} \right)^2}\left( {x - 2} \right) + \left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right) = \left( {2x + 1} \right)\left( {x - 2} \right)\left( {x + 2} \right)\)

\( \Leftrightarrow \left( {{x^2} + 2x + 1} \right)\left( {x - 2} \right) + \left( {{x^2} - 1} \right)\left( {x + 2} \right) = \left( {2x + 1} \right)\left( {{x^2} - 4} \right)\)

\( \Leftrightarrow {x^3} - 2{x^2} + 2{x^2} - 4x + x - 2 + {x^3} + 2{x^2} - x - 2 = 2{x^3} - 8x + {x^2} - 4\)

\( \Leftrightarrow {x^2} + 4x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 4}\end{array}} \right.\) (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là \(x = - 4\) và \(x = 0\)

DẠNG 3: PHƯƠNG TRÌNH CHỨA ẨN DƯỚI DẤU CĂN

Để giải các phương trình chứa ẩn dưới dấu căn bậc hai, ta thường bình phương hai vế để đưa về một phương trình hệ quả không chứa ẩn dưới dấu căn.

  • \(\sqrt {f(x)} = \sqrt {g(x)} \Leftrightarrow \left\{ \begin{array}{l}f(x) = g(x)\\f(x) \ge 0\,\,(hoac\,\,g(x) \ge 0)\end{array} \right.\)
  • \(\sqrt {f(x)} = g(x) \Leftrightarrow \left\{ \begin{array}{l}f(x) = {\left[ {g(x)} \right]^2}\\g(x) \ge 0\end{array} \right.\)

Ví dụ:

Giải các phương trình sau:

a) \(\sqrt {2x - 3} = x - 2.\) (1)

b) \(\sqrt {{x^2} + 2x + 4} = \sqrt {2 - x} \)

Hướng dẫn:

a) Điều kiện của phương trình \(\left( 1 \right)\) là \(x \ge \frac{3}{2}.\)

Bình phương hai vế của phương trình \(\left( 1 \right)\) ta đưa tới phương trình hệ quả:

\(\begin{array}{c}\left( 1 \right) \Rightarrow 2x - 3 = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 6x + 7 = 0.\end{array}\)

Phương trình cuối có hai nghiệm là \(x = 3 + \sqrt 2 \) và \(x = 3 - \sqrt 2 .\) Cả hai giá trị này đều thỏa mãn điều kiện của phương trình \(\left( 1 \right),\) nhưng khi thay vào phương trình \(\left( 1 \right)\) thì giá trị \(x = 3 - \sqrt 2 \) bị loại (vế trái dương còn vế phải âm), còn giá trị \(x = 3 + \sqrt 2 \) là nghiệm (hai vế cùng bằng \(\sqrt 2 + 1\)).

Kết luận. Vậy nghiệm của phương trình \(\left( 1 \right)\) là \(x = 3 + \sqrt 2 .\)

b) ĐKXĐ: \(\left\{ \begin{array}{l}{x^2} + 2x + 4 \ge 0\\2 - x \ge 0\end{array} \right. \Leftrightarrow x \le 2\)

Với điều kiện đó phương trình tương đương với:

\({x^3} + 2x + 4 = 2 - x \Leftrightarrow {x^2} + 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 2\end{array} \right.\)

Đối chiếu với điều kiện ta được nghiệm của phương trình là \(x = - 1\) và \(x = - 2.\)

Từ khóa » Công Thức Phương Trình Bậc 2 Lớp 10