Phương Trình Nào Sau đây Là Phương Trình đường Tròn - Hoc247
Có thể bạn quan tâm
- Câu hỏi:
Phương trình nào sau đây là phương trình đường tròn?
- A. \({x^2} + {y^2} - 2x - 8y + 20 = 0\)
- B. \(4{x^2} + {y^2} - 10x - 6y - 2 = 0\)
- C. \({x^2} + {y^2} - 4x + 6y - 12 = 0\)
- D. \({x^2} + 2{y^2} - 4x - 8y + 1 = 0\)
Lời giải tham khảo:
Đáp án đúng: C
Ta có \({x^2} + {y^2} - 4x + 6y - 12 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25\).
Chú ý: Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình của 1 đường tròn khi và chỉ khi
\({a^2} + {b^2} - c > 0\).
Lưu ý: Đây là câu hỏi tự luận.
ATNETWORK
Mã câu hỏi: 75017
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề trắc nghiệm ôn tập chuyên đề Đường tròn Hình học 10 năm học 2018 - 2019
40 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Đường tròn tâm \(I\left( {a;b} \right)\) và bán kính R có dạng:
- Điểu kiện để \(\left( C \right):{x^2} + {y^2} - 2ax - 2by + c = 0\) là một đường tròn là
- Đường tròn \({x^2} + {y^2} - 10x - 11 = 0\) có bán kính bằng bao nhiêu?
- Một đường tròn có tâm \(I\left( {3{\rm{ }}; - 2} \right)\) tiếp xúc với đường thẳng \(\Delta :x - 5y + 1 = 0\).
- Một đường tròn có tâm là điểm O(0;0) và tiếp xúc với đường thẳng \(\Delta :x + y - 4\sqrt 2 = 0\).
- Đường tròn \({x^2} + {y^2} - 5y = 0\) có bán kính bằng bao nhiêu ?
- Phương trình nào sau đây là phương trình đường tròn
- Tìm tọa độ tâm đường tròn đi qua 3 điểm \(A\left( {0;4} \right),B\left( {2;4} \right),C\left( {4;0} \right)\).
- Tìm bán kính đường tròn đi qua 3 điểm \(A\left( {0;4} \right),B\left( {3;4} \right),C\left( {3;0} \right)\).
- Phương trình nào sau đây không phải là phương trình đường tròn ?
- Đường tròn \({x^2} + {y^2} + 4y = 0\) không tiếp xúc đường thẳng nào trong các đường thẳng dưới đây?
- Đường tròn \({x^2} + {y^2} - 1 = 0\) tiếp xúc đường thẳng nào trong các đường thẳng dưới đây?
- Tìm giao điểm 2 đường tròn \(\left( {{C_1}} \right):{x^2} + {y^2} - 4 = 0\) và \((C_2) {x^2} + {y^2} - 4x - 4y + 4 = 0\)
- Đường tròn \({x^2} + {y^2} - 2x + 10y + 1 = 0\) đi qua điểm nào trong các điểm dưới đây ?
- Một đường tròn có tâm I(1;3) tiếp xúc với đường thẳng \(\Delta :3x + 4y = 0\).
- Đường tròn \((C): {(x - 2)^2}{(y - 1)^2} = 25\) không cắt đường thẳng nào trong các đường thẳng sau đây?
- Đường tròn nào dưới đây đi qua 3 điểm \(A\left( {2;0} \right),{\rm{ }}B\left( {0;6} \right),{\rm{ }}O\left( {0;0} \right)\)?
- Đường tròn nào dưới đây đi qua điểm A(4;- 2).
- Xác định vị trí tương đối giữa 2 đường tròn \(\left( {{C_1}} \right):{x^2} + {y^2} = 4\) và \(\left( {{C_2}} \right):{\l
- Tìm giao điểm 2 đường tròn \((C_1): {x^2} + {y^2} = 5\) và \((C_2): {x^2} + {y^2} - 4x - 8y + 15 = 0\)
- Đường tròn nào sau đây tiếp xúc với trục Ox?
- Đường tròn nào sau đây tiếp xúc với trục Oy?
- Tâm đường tròn \({x^2} + {y^2} - 10x + 1 = 0\) cách trục Oy bao nhiêu ?
- Viết phương trình đường tròn đi qua 3 điểm \(O\left( {0;0} \right),{\rm{ }}A\left( {a;0} \right),{\rm{ }}B\left( {0;b} \right)\).
- Với những giá trị nào của m thì đường thẳng \(\Delta :4x + 3y + m = 0\) tiếp xúc với đường tròn \(\left( C \right
- Đường tròn \({(x - a)^2} + {(y - b)^2} = {R^2}\)cắt đường thẳng \(x + y - a - b = 0\) theo một dây cung có độ dài bằng bao
- Tìm tọa độ giao điểm của đường thẳng \(\Delta : x - 2y + 3 = 0\) và đường tròn \((C): {x^2} + {y^2} - 2x - 4y = 0\).
- Tìm tọa độ giao điểm của đường thẳng \(\Delta :x + y - 7 = 0\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 25 = 0\).
- Đường tròn \({x^2} + {y^2} - 2x - 2y - 23 = 0\) cắt đường thẳng \(\Delta :x - y + 2\; = 0\) theo một dây cung có độ dài
- Đường tròn nào sau đây tiếp xúc với trục Oy
- Đường tròn \({x^2} + {y^2} - 4x - 2y + 1 = 0\) tiếp xúc đường thẳng nào trong các đường thẳng dưới đây?
- Với những giá trị nào của m thì đường thẳng \(\Delta: 3x + 4y + 3 = 0\) tiếp xúc với đường tròn \((C): {(x - m)^2} + {
- Cho đường tròn \(\left( C \right):{x^2} + {y^2} - 8x + 6y + 21 = 0\) và đường thẳng \(d:x + y - 1 = 0\).
- Cho tam giác ABC đều.Gọi D là điểm đối xứng của C qua AB.
- Trong mặt phẳng với hệ tọa độ Oxy cho ba điểm A(0;a), B(b;0), C(- b;0) với a > 0, b > 0.
- Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn \(\left( C \right):{x^2} + {\rm{ }}{y^2}--2x--2y + 1 = 0,\
- Trong hệ tọa độ Oxy, cho hai đường tròn có phương trình \(\left( {{C_1}} \right):{x^2} + {y^2} - 4y - 5 = 0\) và \(\left( {{C_2}
- Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn \(\left( C \right):{x^2} + {y^2} + 2x - 8y - 8 = 0\).
- Trong mặt phẳng với hệ tọa độ Oxy.
- Trong mặt phẳng Oxy, cho hai đường tròn: \(\left( {{C_1}} \right):\quad {x^2} + {y^2} = 13\) và \(\left( {{C_2}} \right):\;{\left( {x -
XEM NHANH CHƯƠNG TRÌNH LỚP 10
Toán 10
Toán 10 Kết Nối Tri Thức
Toán 10 Chân Trời Sáng Tạo
Toán 10 Cánh Diều
Giải bài tập Toán 10 Kết Nối Tri Thức
Giải bài tập Toán 10 CTST
Giải bài tập Toán 10 Cánh Diều
Trắc nghiệm Toán 10
Ngữ văn 10
Ngữ Văn 10 Kết Nối Tri Thức
Ngữ Văn 10 Chân Trời Sáng Tạo
Ngữ Văn 10 Cánh Diều
Soạn Văn 10 Kết Nối Tri Thức
Soạn Văn 10 Chân Trời Sáng tạo
Soạn Văn 10 Cánh Diều
Văn mẫu 10
Tiếng Anh 10
Giải Tiếng Anh 10 Kết Nối Tri Thức
Giải Tiếng Anh 10 CTST
Giải Tiếng Anh 10 Cánh Diều
Trắc nghiệm Tiếng Anh 10 KNTT
Trắc nghiệm Tiếng Anh 10 CTST
Trắc nghiệm Tiếng Anh 10 CD
Giải Sách bài tập Tiếng Anh 10
Vật lý 10
Vật lý 10 Kết Nối Tri Thức
Vật lý 10 Chân Trời Sáng Tạo
Vật lý 10 Cánh Diều
Giải bài tập Lý 10 Kết Nối Tri Thức
Giải bài tập Lý 10 CTST
Giải bài tập Lý 10 Cánh Diều
Trắc nghiệm Vật Lý 10
Hoá học 10
Hóa học 10 Kết Nối Tri Thức
Hóa học 10 Chân Trời Sáng Tạo
Hóa học 10 Cánh Diều
Giải bài tập Hóa 10 Kết Nối Tri Thức
Giải bài tập Hóa 10 CTST
Giải bài tập Hóa 10 Cánh Diều
Trắc nghiệm Hóa 10
Sinh học 10
Sinh học 10 Kết Nối Tri Thức
Sinh học 10 Chân Trời Sáng Tạo
Sinh học 10 Cánh Diều
Giải bài tập Sinh 10 Kết Nối Tri Thức
Giải bài tập Sinh 10 CTST
Giải bài tập Sinh 10 Cánh Diều
Trắc nghiệm Sinh học 10
Lịch sử 10
Lịch Sử 10 Kết Nối Tri Thức
Lịch Sử 10 Chân Trời Sáng Tạo
Lịch Sử 10 Cánh Diều
Giải bài tập Lịch Sử 10 KNTT
Giải bài tập Lịch Sử 10 CTST
Giải bài tập Lịch Sử 10 Cánh Diều
Trắc nghiệm Lịch sử 10
Địa lý 10
Địa Lý 10 Kết Nối Tri Thức
Địa Lý 10 Chân Trời Sáng Tạo
Địa Lý 10 Cánh Diều
Giải bài tập Địa Lý 10 KNTT
Giải bài tập Địa Lý 10 CTST
Giải bài tập Địa Lý 10 Cánh Diều
Trắc nghiệm Địa lý 10
GDKT & PL 10
GDKT & PL 10 Kết Nối Tri Thức
GDKT & PL 10 Chân Trời Sáng Tạo
GDKT & PL 10 Cánh Diều
Giải bài tập GDKT & PL 10 KNTT
Giải bài tập GDKT & PL 10 CTST
Giải bài tập GDKT & PL 10 CD
Trắc nghiệm GDKT & PL 10
Công nghệ 10
Công nghệ 10 Kết Nối Tri Thức
Công nghệ 10 Chân Trời Sáng Tạo
Công nghệ 10 Cánh Diều
Giải bài tập Công nghệ 10 KNTT
Giải bài tập Công nghệ 10 CTST
Giải bài tập Công nghệ 10 CD
Trắc nghiệm Công nghệ 10
Tin học 10
Tin học 10 Kết Nối Tri Thức
Tin học 10 Chân Trời Sáng Tạo
Tin học 10 Cánh Diều
Giải bài tập Tin học 10 KNTT
Giải bài tập Tin học 10 CTST
Giải bài tập Tin học 10 Cánh Diều
Trắc nghiệm Tin học 10
Cộng đồng
Hỏi đáp lớp 10
Tư liệu lớp 10
Xem nhiều nhất tuần
Đề thi giữa HK1 lớp 10
Đề thi giữa HK2 lớp 10
Đề thi HK1 lớp 10
Đề thi HK2 lớp 10
Đề cương HK1 lớp 10
Video bồi dưỡng HSG môn Toán
Toán 10 Cánh Diều Bài tập cuối chương 1
Toán 10 Chân trời sáng tạo Bài 2: Tập hợp
Toán 10 Kết nối tri thức Bài 1: Mệnh đề
Soạn bài Ra-ma buộc tội - Ngữ văn 10 Tập 1 Cánh Diều
Soạn bài Chữ người tử tù - Nguyễn Tuân - Ngữ văn 10 KNTT
Soạn bài Thần Trụ Trời - Ngữ văn 10 CTST
Văn mẫu về Bình Ngô đại cáo
Văn mẫu về Chữ người tử tù
Văn mẫu về Tây Tiến
Văn mẫu về Cảm xúc mùa thu (Thu hứng)
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Trong Các Pt Sau Pt Nào Là Pt đường Tròn
-
Phương Trình Nào Sau đây Là Phương Trình đường Tròn?
-
Phương Trình Nào Sau đây Là Phương Trình đường Tròn?
-
Hãy Cho Biết Phương Trình Nào Trong Các Phương Trình Sau đây Là ...
-
Cách Nhận Dạng Một Phương Trình đường Tròn
-
Câu Hỏi 2 Trang 82 SGK Hình Lớp 10: Hãy Cho Biết Phương Trình Nào ...
-
Nhận Dạng Phương Trình đường Tròn. Tìm Tâm Và Bán Kính đường Tròn
-
Phương Trình Của đường Tròn Là Gì ? Phương Trình Tổng Quát Có Tâm ...
-
Lý Thuyết Phương Trình đường Tròn | SGK Toán Lớp 10
-
Lý Thuyết Phương Trình đường Tròn - TopLoigiai
-
Phương Trình Nào Sau đây Không Phải Là Phương Trình đường Tròn
-
Tìm M để Các Phương Trình Sau Là Phương Trình đường Tròn
-
Sách Giải Bài Tập Toán Lớp 10 Bài 2: Phương Trình Đường Tròn
-
PT đường Tròn - Tài Liệu Text - 123doc
-
Phương Trình đường Tròn Và Các Dạng Bài Tập Có Lời Chuẩn 100%