R) đường Kính AB. Vẽ Hai Dây AB Và CD Cắt Nhau Tại điểm E Nằm ...
Có thể bạn quan tâm
![học toán Học trực tuyến](/images/logo-white.png?v=1734529222)
- Học bài
- Hỏi bài
- Kiểm tra
- ĐGNL
- Thi đấu
- Bài viết Cuộc thi Tin tức Blog học tập
- Trợ giúp
- Về OLM
Mua 1 được 3: Tặng thêm VIP và bộ đề kiểm tra cuối kỳ I khi mua VIP
Lớp livestream ôn tập cuối kỳ I miễn phí dành cho học sinh, tham gia ngay!
Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Cập nhật Hủy Cập nhật Hủy- Mẫu giáo
- Lớp 1
- Lớp 2
- Lớp 3
- Lớp 4
- Lớp 5
- Lớp 6
- Lớp 7
- Lớp 8
- Lớp 9
- Lớp 10
- Lớp 11
- Lớp 12
- ĐH - CĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tạo câu hỏi Hủy Xác nhận câu hỏi phù hợpChọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
- Tất cả
- Mới nhất
- Câu hỏi hay
- Chưa trả lời
- Câu hỏi vip
Bài 6: Cho đường tròn (O ; R) đường kính AB. Vẽ hai dây AB và CD cắt nhau tại điểm E nằm trong đường tròn.
a. Chứng minh rằng: EA.ED = EB.EC.
b. Chứng minh rằng: AE.AD + BE.BC không đổi.
#Toán lớp 9 1![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài chắc là: Vẽ hai dây AD và BC cắt nhau ở E. Lời giải như sau:
a. Do AB là đường kính nên các góc ACB, ADB vuông. Xét hai tam giác vuông ACE và BDE có \(\angle AEC=\angle BED\) (đối đỉnh), do đó \(\Delta ACE\sim\Delta BDE\) (g.g). Vậy \(\frac{AE}{BE}=\frac{CE}{DE}\to EA\cdot ED=EB\cdot EC.\)b. Kẻ đường vuông góc \(EH\) với \(AB.\) Khi đó \(H\) thuộc đoạn thẳng \(AB.\)Ta có \(\Delta AEH\sim\Delta ABD\left(g.g.\right)\to\frac{AE}{AB}=\frac{AH}{AD}\to AE\cdot AD=AB\cdot AH.\) Tương tư, \(\Delta BEH\sim\Delta BAC\left(g.g\right)\to\frac{BE}{BA}=\frac{BH}{BC}\to BE\cdot BC=BA\cdot BH.\)Cộng hai đẳng thức lại ta được, \(AE\cdot AD+BE\cdot BC=AB\cdot AH+AB\cdot BH=AB\left(AH+BH\right)=AB^2.\) Suy ra \(AE\cdot AD+BE\cdot BC=AB^2\) không đổi. (ĐPCM)
Đúng(0) T trang 21 tháng 4 2015 - olmcho đường tròn (O;R) đường kính AB, dây cung AD và BC cắt nhau tại E (E nằm trong đường tròn ).
chứng minh: AE.AD+BE.BC= 4R2
#Toán lớp 9 4![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng dẫn cách làm
kẻ đường cao AH
xét tam giác AEH
Đúng(0) Xem thêm câu trả lời VH Vũ Hoàng Anh 31 tháng 10 2020 - olm Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....Đọc tiếpBài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF
Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.
Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.
Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.
Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK.
giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha
#Toán lớp 9 0![](https://rs.olm.vn/images/avt/0.png?1311)
Cho đường tròn tâm O, bán kính R với đường kính AB, hai dây AD & BC cắt nhau ở E nằm trong đường tròn C/mR : AE.AD+BE.BC=4xR^2
#Toán lớp 9 1![](https://rs.olm.vn/images/avt/0.png?1311)
http://olm.vn/hoi-dap/question/74826.html
Đúng(0) TT Trang Triệu 24 tháng 1 2021 a) Cho đường tròn tâm O bán kính R. Hai dây AB và CD bằng nhau và vuông gócvới nhau tại I. Chứng minh rằng \(IA^2+IB^2+IC^2+ID^2\) không đổi.b) Trong đường tròn tâm O vẽ dây cung AD không đi qua O. Đường kính vuônggóc với OA cắt tiếp tuyến tại D của (O) tại điểm C. Chứng minh rằng phân giác của gócDCO song song với đường trung trực của...Đọc tiếpa) Cho đường tròn tâm O bán kính R. Hai dây AB và CD bằng nhau và vuông gócvới nhau tại I. Chứng minh rằng \(IA^2+IB^2+IC^2+ID^2\) không đổi.b) Trong đường tròn tâm O vẽ dây cung AD không đi qua O. Đường kính vuônggóc với OA cắt tiếp tuyến tại D của (O) tại điểm C. Chứng minh rằng phân giác của gócDCO song song với đường trung trực của AD
#Toán lớp 9 0![](https://rs.olm.vn/images/avt/0.png?1311)
cho một đường tròn (O;R) từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB và AC với đường tròn.
a, chứng minh ABOC nội tiếp.
b,D là trung điểm AC và BD cắt đường tròn tại E, AE cắt đường tròn tại F. Chứng minh AB2= AE•AF
c, i là giao điểm ao với (o) chứng minh BC=CF
#Toán lớp 9 1![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác ABOC có
góc OBA+góc OCA=180 độ
=>ABOC là tứ giác nội tiếp
b: Xét ΔABE và ΔAFB có
góc ABE=góc AFB
góc BAE chung
=>ΔABE đồng dạng với ΔAFB
=>AB/AF=AE/AB
=>AB^2=AF*AE
Đúng(0) PT Pham Trong Bach 7 tháng 10 2017Cho đường tròn (O), hai dây AB, CD bằng nhau và cắt nhau tại điểm I nằm bên trong đường tròn. Chứng minh rằng: OI là tia phân giác của một trong hai góc tạo bởi hai dây AB, CD.
#Toán lớp 9 1![](https://rs.olm.vn/images/avt/0.png?1311)
Kẻ OH ⊥ AB, OK ⊥ CD
Ta có: AB = CD (gt)
Suy ra : OH = OK (hai dây bằng nhau cách đều tâm)
Vậy OI là tia phân giác của góc BID (tính chất đường phân giác)
Đúng(0) PT Pham Trong Bach 25 tháng 7 2017Cho đường tròn (O), hai dây AB, CD bằng nhau và cắt nhau tại điểm I nằm bên trong đường tròn. Chứng minh rằng: Điểm I chia AB, CD thành các đoạn thẳng bằng nhau đôi một.
#Toán lớp 9 1![](https://rs.olm.vn/images/avt/0.png?1311)
Xét hai tam giác OIH và OIK, ta có :
OI chung
OH = OK (chứng minh trên)
Suy ra: ∆ OIH = ∆ OIK (cạnh huyền, cạnh góc vuông)
Suy ra: IH = IK (1)
Lại có: HA = HB = (1/2).AB
KC = KD = (1/2).CD
Mà AB = CD nên HA = KC (2)
Từ (1) và (2) suy ra: IA = IC
Mà AB = CD nên IB = ID
Đúng(0) PT Pham Trong Bach 10 tháng 6 2019Cho đường tròn (O), hai dây AB, CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB > CD, chứng minh rằng MH > MK.
#Toán lớp 9 1![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: HA = HB (gt)
Suy ra : OH ⊥ AB (đường kính dây cung)
Lại có : KC = KD (gt)
Suy ra : OK ⊥ CD (đường kính dây cung)
Mà AB > CD (gt)
Nên OK > OH (dây lớn hơn gần tâm hơn)
Áp dụng định lí Pitago vào tam giác vuông OHM ta có :
O M 2 = O H 2 + H M 2
Suy ra : H M 2 = O M 2 - O H 2 (1)
Áp dụng định lí Pitago vào tam giác vuông OKM ta có:
O M 2 = O K 2 + K M 2
Suy ra: K M 2 = O M 2 - O K 2 (2)
Mà OH < OK (cmt) (3)
Từ (1), (2) và (3) suy ra: H M 2 > K M 2 hay HM > KM
Đúng(0) D DUTREND123456789 21 tháng 12 2023 Từ điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB và AC với đường tròn (O;R) . Gọi H là giao điểm của AO và BC.a) Chứng minh AO là đường trung trực BCb) Vẽ đường kính CD của đường tròn (O) , AD cắt đường tròn (O) tại E. Chứng minh \(AB^2=AE.AD\)c) Tiếp tuyến E của đường tròn (O) cắt AB , AC lần lượt tại M và N . Chứng minh chu vi \(\Delta ANM=AB+AC\)d) MN cắt AO tại I , EO cắt BC tại P ....Đọc tiếpTừ điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB và AC với đường tròn (O;R) . Gọi H là giao điểm của AO và BC.
a) Chứng minh AO là đường trung trực BCb) Vẽ đường kính CD của đường tròn (O) , AD cắt đường tròn (O) tại E. Chứng minh \(AB^2=AE.AD\)
c) Tiếp tuyến E của đường tròn (O) cắt AB , AC lần lượt tại M và N . Chứng minh chu vi \(\Delta ANM=AB+AC\)
d) MN cắt AO tại I , EO cắt BC tại P . Chứng minh \(AE//IP\)
#Toán lớp 9 1![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
b: AO là đường trung trực của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE
\(\widehat{EDB}\) là góc nội tiếp chắn cung BE
Do đó: \(\widehat{ABE}=\widehat{EDB}\)
Xét ΔABE và ΔADB có
\(\widehat{ABE}=\widehat{ADB}\)
\(\widehat{BAE}\) chung
Do đó: ΔABE đồng dạng với ΔADB
=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)
=>\(AB^2=AD\cdot AE\)
c: Xét (O) có
MB,ME là các tiếp tuyến
Do đó: MB=ME
Xét (O) có
NE,NC là các tiếp tuyến
Do đó: NE=NC
Chu vi tam giác AMN là:
\(AM+MN+AN\)
\(=AM+ME+EN+AN\)
\(=AM+MB+AN+NC\)
=AB+AC
Đúng(1) Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên- Tuần
- Tháng
- Năm
- LB Lê Bá Bảo nguyên 20 GP
- N ngannek 20 GP
- 1 14456125 16 GP
- VN vh ng 15 GP
- ND Nguyễn Đức Hoàng 12 GP
- VT Võ Thanh Khánh Ngọc 10 GP
- LB Lương Bảo Phương 6 GP
- NH nguyễn hoành gia bảo 6 GP
- KS Kudo Shinichi@ 4 GP
- NG Nguyễn Gia Bảo 4 GP
![Học trực tuyến OLM Học toán với OLM](/images/logo.png?v=1734529222)
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng ĐóngYêu cầu VIP
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
Từ khóa » Chứng Minh Ea^2+eb^2+ec^2+ed^2=4r^2
-
Gọi D Là Giao điểm Thứ Hai Của AE Với đường Tròn Tâm O. Chứng Minh
-
Chứng Minh Rằng: EA2 + EB2 + EC2 + ED2 = 4R2 - Luyện Tập 247
-
R). Ba đường Cao AE, BF, CG Cắt Nhau Tại H (với E BC, F AC, G AB). A
-
Kỳ Thi Tuyển Sinh Vào Lớp 10 THPT Môn Toán (2013 - (Kèm Đ.án)
-
Tính EA^2 + EB^2 + EC^2 + ED^2 Và CM, CE Theo R - Toán Học Lớp 9
-
Chứng Minh ED^2 = EC.EB,Chứng Minh ED^2 = EC * EB
-
Cho đường Tròn Tâm O Bán Kính R. Hai đường Kính AB Và CD Vuông ...
-
Cho Tam Giác ABC Có Â = 90 độ. Một đường Thẳng Cắt 2 Cạnh AB ...
-
Quantifying SARS-CoV-2 Transmission Suggests Epidemic Control ...
-
Chứng Minh EB^2-EC^2=AB^2 Biết Tam Giác ABC Vuông Tại A Có D ...