Sách Giải Bài Tập Toán Lớp 9 Ôn Tập Chương 3 (câu Hỏi
Có thể bạn quan tâm
Xem toàn bộ tài liệu Lớp 9: tại đây
Xem thêm các sách tham khảo liên quan:
- Sách Giáo Khoa Toán lớp 9 tập 1
- Sách Giáo Khoa Toán lớp 9 tập 2
- Giải Sách Bài Tập Toán Lớp 9
- Sách Giáo Viên Toán Lớp 9 Tập 1
- Sách Giáo Viên Toán Lớp 9 Tập 2
- Sách Bài Tập Toán Lớp 9 Tập 1
- Sách Bài Tập Toán Lớp 9 Tập 2
Sách giải toán 9 Ôn tập chương 3 (Câu hỏi – Bài tập) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Ôn tập chương 3 Phần Hình Học
Trả lời phần Câu hỏi trang 100-101 sgk Toán 9 Tập 2
1. Góc ở tâm là gì?
Trả lời:
Góc ở tâm là góc có đỉnh trùng với tâm của đường tròn.
2. Góc nội tiếp là gì?
Trả lời:
Góc nội tiếp l góc có đỉnh nằm trên đường tròn, hai cạnh cắt đường tròn đó.
3. Góc tạo bởi tia tiếp tuyến và dây cung là gì?
Trả lời:
Đường thẳng xt tiếp xúc với đường tròn (O) tại điểm A thì tiếp điểm A chia tiếp tuyến xt thành hai tia đối nhau Ax và At. Mỗi tia như vậy gọi là một tia tiếp tuyến.
Góc tạo bởi một tia tiếp tuyến với một dây cung của đường tròn có một đầu mút là gốc của tia tiếp tuyến gọi là góc tạo bởi tiếp tuyến và dây cung. Ví dụ góc Bax trong hình.
4. Tứ giác nội tiếp là gì?
Trả lời:
Tứ giác nội tiếp là tứ giác có 4 đỉnh nằm trên một đường tròn.
5. Với ba điểm A, B, C thuộc một đường tròn, khi nào thì
Trả lời:
6. Phát biểu các định lí về mối quan hệ giữa cung nhỏ và dây căng cung đó trong một đường tròn.
Trả lời:
Với hai cung nhỏ của một đường tròn hay hai đường tròn bằng nhau thì:
– Hai cung bằng nhau căng hai dây bằng nhau.
– Hai dây bằng nhau căng hai cung bằng nhau.
– Cung lớn hơn căng dây lớn hơn.
– Dây lớn hơn căng cung lớn hơn.
7. Phát biểu định lí và hệ quả về các góc nội tiếp cùng chắn một cung.
Trả lời:
Định lí: Các góc nội tiếp cùng chắn một cung thì bằng nhau.
Hệ quả: Góc nội tiếp (nhỏ hơn hoặc bằng 90o) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
8. Phát biểu định lí về góc tạo bởi tia tiếp tuyến và dây cung.
Trả lời:
Định lí thuận: Góc tạo bởi tia tiếp tuyến và dây cung có số đo bằng nửa số đo của cung bị chắn.
Định lí đảo: Một góc có đỉnh nằm trên đường tròn, một cạnh chứa dây cung, có số đo bằng nửa số đo cung căng dây đó và cung này nằm bên trong góc thì cạnh kia là một tia tiếp tuyến.
9. Phát biểu quỹ tích cung chứa góc .
Trả lời:
Quỹ tích (tập hợp) các điểm nhìn một đoạn thẳng cho trước dưới một góc α không đổi là hai cung chứa góc α dựng trên đoạn thẳng đó (0o < α < 180o).
10. Phát biểu điều kiện để một tứ giác nội tiếp được đường tròn.
Trả lời:
Một tứ giác nội tiếp được đường tròn nếu thỏa mãn một trong các điều kiện sau:
+ Tổng của hai góc đối diện bằng 180o.
+ Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện.
+ Hai đỉnh kề cùng nhình cạnh nối hai đỉnh còn lại dưới góc bằng nhau.
+ Bốn đỉnh cách đều một điểm cố định.
11. Phát bểu một số dâu hiệu nhận biết tứ giác nội tiếp.
Trả lời:
Các dấu hiệu:
+ Tổng hai góc đối diện bằng 180o.
+ Góc ngoài tại một đỉnh bằng góc trong ở đỉnh đối diện.
+ Bốn đỉnh cách đều một điểm cố định.
12. Phát biểu định lí về đường tròn ngoại tiếp và đường tròn nội tiếp của đa giác đều.
Trả lời:
Định lí: Mỗi đa giác đều có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.
13. Nêu cách tính số đo cung nhỏ, cung lớn.
Trả lời:
Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. Số đo của cung lớn bằng 360o trừ đi số đo của cung nhỏ cùng căng dây cung.
14. Nêu cách tính số đo của góc nội tiếp theo số đo của cung bị chắn.
Trả lời:
Số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
15. Nêu cách tính số đo của góc tạo bởi tia tiếp tuyến và dây cung theo số đo của cung bị chắn.
Trả lời:
Số đo cuả góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
16. Nêu cách tính số đo của góc có đỉnh ở bên trong đường tròn theo số đo của các cung bị chắn.
Trả lời:
Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo các cung bị chắn.
17. Nêu cách tính số đo của góc có đỉnh ở bên ngoài đường tròn theo số đo của các cung bị chắn.
Trả lời:
Số đo của góc có đỉnh bên ngoài đường tròn bằng nửa hiệu số đo của các cung bị chắn.
18. Nêu cách tính độ dài cung no của hình quạt tròn bán kính R.
Trả lời:
Độ dài l của cung no của hình quạt tròn bán kính R được tính theo công thức:
19. Nêu cách tính diện tích hình quạt tròn bán kính R, cung no.
Trả lời:
Diện tích S của hình quạt tròn bán kính R, cung no được tính theo công thức:
Ôn tập chương 3 – Giải phần Bài tập
Bài 88 (trang 103 SGK Toán 9 tập 2): Hãy nêu tên mỗi góc trong các hình dưới đây:
(Ví dụ. góc trên hình 66b) là góc nội tiếp).
Hình 66
Lời giải
a) Góc ở tâm.
b) Góc nội tiếp.
c) Góc tạo bởi tiếp tuyến và dây cung.
d) Góc có đỉnh bên trong đường tròn.
e) Góc có đỉnh bên ngoài đường tròn.
Ôn tập chương 3 – Giải phần Bài tập
Bài 89 (trang 104 SGK Toán 9 tập 2): Trong hình 67, cung AmB có số đo là 60o. Hãy:
a) Vẽ góc ở tâm chắn cung AmB. Tính góc AOB.
b) Vẽ góc nội tiếp đỉnh C chắn cung AmB. Tính góc ACB.
c) Vẽ góc tạo bởi tia tiếp tuyến Bt và dây cung BA. Tính góc ABt.
d) Vẽ góc ADB có đỉnh D ở bên trong đường tròn. So sánh
e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (E và C cùng phía đối với AB). So sánh
Lời giải
Ôn tập chương 3 – Giải phần Bài tập
Bài 90 (trang 104 SGK Toán 9 tập 2): a) Vẽ hình vuông cạnh 4cm.
b) Vẽ đường tròn ngoại tiếp hình vuông đó. Tính bán kính R của đường tròn này.
c) Vẽ đường tròn nội tiếp hình vuông đó. Tính bán kính r của đường tròn này.
Lời giải
a) Vẽ hình vuông ABCD có cạnh 4cm.
b) Vẽ hai đường chéo AC và BD. Chúng cắt nhau tại O.
Đường tròn (O; OA) là đường tròn ngoại tiếp hình vuông ABCD.
Ta có:
(cm)⇒ R = OA = AC/2 = 2√2 (cm).
c) Gọi H là trung điểm AB.
(O ; OH) là đường tròn nội tiếp hình vuông ABCD.
r = OH = AD/2 = 2cm.
Ôn tập chương 3 – Giải phần Bài tập
Bài 91 (trang 104 SGK Toán 9 tập 2): Trong hình 68, đường tròn tâm O có bán kính R = 2cm, góc AOB = 75o.
Lời giải
Ôn tập chương 3 – Giải phần Bài tập
Bài 92 (trang 104 SGK Toán 9 tập 2): Hãy tính diện tích miền gạch sọc trong các hình 69, 70, 71 (đơn vị độ dài: cm).
Lời giải
Ôn tập chương 3 – Giải phần Bài tập
Bài 93 (trang 104-105 SGK Toán 9 tập 2): Có ba bánh xe răng cưa A, B, C cùng chuyển độn ăn khớp với nhau. Khi một bánh xe quay thì hai bánh xe còn lại cũng quay theo. Bánh xe A có 60 răng, bánh xe B có 40 răng, bánh xe C có 20 răng. Biết bán kính bánh xe C là 1cm. Hỏi:
a) Khi bánh xe C quay 60 vòng thì bánh xe B quay mấy vòng?
b) Khi bánh xe A quay 80 vòng thì bánh xe B quay mấy vòng?
c) Bán kính của các bánh xe A và B là bao nhiêu?
Lời giải
Ta có bánh xe A có 60 răng, bánh xe B có 40 răng, bánh xe C có 20 răng nên suy ra chu vi của bánh xe B gấp đôi chu vi bánh xe C, chu vi bánh xe A gấp ba chu vi bánh xe C.
Chu vi bánh xe C là: 2. 3,14 . 1 = 6,28 (cm)
Chu vi bánh xe B là: 6,28 . 2 = 12,56 (cm)
Chu vi bánh xe A là: 6,28 . 3 = 18,84 (cm)
a) Khi bánh xe C quay được 60 vòng thì quãng đường đi được là:
60 . 6,28 = 376,8 (cm)
Khi đó số vòng quay của bánh xe B là:
376,8 : 12,56 = 30 (vòng)
b) Khi bánh xe A quay được 80 vòng thì quãng đường đi được là:
80 . 18,84 = 1507,2 (cm)
Khi đó số vòng quay của bánh xe B là:
1507,2 : 12,56 = 120 (vòng)
c) Bán kính bánh xe B là: 12,56 : (2π) = 12,56 : 6,28 = 2(cm)
Bán kính bánh xe A là: 12,56 : (3π) = 12,56 : 9,42 = 3(cm)
Ôn tập chương 3 – Giải phần Bài tập
Bài 94 (trang 105 SGK Toán 9 tập 2): Hãy xem biểu đồ hình quạt biểu diễn sự phân phối học sinh của một trường THCS theo diện ngoại trú, bán trú, nội trú (h.72). Hãy trả lời các câu hỏi sau:
a) Có phải ½ số học sinh là học sinh ngoại trú không ?
b) Có phải 1/3 số học sinh là học sinh bán trú không?
c) Số học sinh nội trú chiếm bao nhiêu phần trăm?
d) Tính số học sinh mỗi loại, biết tổng số học sinh là 1800 em.
Lời giải
Ôn tập chương 3 – Giải phần Bài tập
Bài 95 (trang 105 SGK Toán 9 tập 2): Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90o) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng minh rằng:
a) CD = CE ; b) ΔBHD cân ; c) CD = CH.
Lời giải
Ôn tập chương 3 – Giải phần Bài tập
Bài 96 (trang 105 SGK Toán 9 tập 2): Cho tam giác ABC nội tiếp đường tròn (O) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH. Chứng minh rằng:
a) OM đi qua trung điểm của dây BC.
b) AM là tia phân giác của góc OAH.
Lời giải
Ôn tập chương 3 – Giải phần Bài tập
Bài 97 (trang 105 SGK Toán 9 tập 2): Cho tam giác ABC vuông ở A. Trên AC lấy một điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
Lời giải
a) ⇒ A ∈ đường tròn đường kính BC.
D ∈ đường tròn đường kính MC
⇒ D ∈ đường tròn đường kính BC
⇒ A, B, C, D cùng thuộc đường tròn đường kính BC
hay tứ giác ABCD nội tiếp.
b) Xét đường tròn đường kính BC:
đều là góc nội tiếp chắn cung
c) + Trong đường tròn đường kính MC:
đều là các góc nội tiếp cùng chắn cung
+ Trong đường tròn đường kính BD:
đều là các góc nội tiếp chắn cung
Ôn tập chương 3 – Giải phần Bài tập
Bài 98 (trang 105 SGK Toán 9 tập 2): Cho đường tròn (O) và một điểm A cố định trên đường tròn. Tìm quỹ tích các trung điểm M của dây AB khi điểm B di động trên đường tròn đó.
Lời giải
Phần thuận: giả sử M là trung điểm của dây AB. Ta có OM ⊥ AB (định lí)
Khi B di động trên (O), điểm M luôn nhình OA cố định dưới góc vuông , vậy M thuộc đường tròn đường kính OA.
Phần đảo: lấy điểm M’ bất kì trên đường tròn đường kính OA.
Nối M’ với A, đường thẳng M’A cắt đường tròn (O) tại B’. Nối M’ với O ta có
Hay OM’ ⊥ AB’
⇒ M’ là trung điểm của AB’
Kết luận: Tập hợp các trung điểm của dây AB là đường tròn đường kính OA.
Ôn tập chương 3 – Giải phần Bài tập
Bài 99 (trang 105 SGK Toán 9 tập 2): Dựng ΔABC, biết BC = 6cm, góc BAC = 80o, đường cao AH có độ dài là 2cm.
Lời giải
Cách dựng:
+ Dựng đoạn thẳng BC = 6cm.
+ Dựng cung chứa góc 80º trên đoạn thẳng BC (tương tự bài 46) :
Dựng tia Bx sao cho
Dựng tia By ⊥ Bx.
Dựng đường trung trực của BC cắt By tại O.
Dựng đường tròn (O; OB).
Cung lớn BC chính là cung chứa góc 800 dựng trên đoạn BC.
+ Dựng đường thẳng d song song với BC và cách BC một đoạn 2cm:
Lấy D là trung điểm BC.
Trên đường trung trực của BC lấy D’ sao cho DD’ = 2cm.
Dựng đường thẳng d đi qua D’ và vuông góc với DD’.
+ Đường thẳng d cắt cung lớn BC tại A.
Ta được ΔABC cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 6cm.
+ A ∈ cung chứa góc 800 dựng trên đoạn BC
+ A ∈ d song song với BC và cách BC 4cm
⇒ AH = DD’ = 2cm.
Vậy ΔABC thỏa mãn yêu cầu đề bài.
Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.
Bài giải này có hữu ích với bạn không?
Bấm vào một ngôi sao để đánh giá!
Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!Đánh giá trung bình 4 / 5. Số lượt đánh giá: 994
Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.
Từ khóa » Câu Hỏi ôn Tập Chương 3 Toán Hình Lớp 9
-
Câu Hỏi ôn Tập Chương 3 Phần Hình Học 9
-
Câu Hỏi ôn Tập Chương 3 Phần Đại Số 9 | Hay Nhất Giải Bài Tập Toán ...
-
Câu Hỏi ôn Tập Chương 3 Hình Học Toán 9 Tập 2 - Haylamdo
-
Ôn Tập Chương III – Góc Với đường Tròn
-
Hệ Hai Phương Trình Bậc Nhất Hai ẩn Trang 25 SGK Toán 9 Tập 2
-
Câu Hỏi ôn Tập Chương 3 Phần Hình Học 9 - MarvelVietnam
-
Phần Trả Lời Câu Hỏi Toán 9 Tập 2 Ôn Tập Chương 3 - Top Lời Giải
-
Giải Bài: Ôn Tập Chương 3 Sgk Toán 9 Tập 2 Trang 100 105 - Tech12h
-
Giải Toán Lớp 9 SGK Tập 2 Trang 100, 101: Ôn Tập Chương 3
-
40 Câu Trắc Nghiệm Ôn Tập Chương 3 Hình Học 9 - HOC247
-
Câu Hỏi ôn Tập Chương III Hình Học 9 - 123doc
-
Trả Lời Câu Hỏi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Trang ...
-
Trắc Nghiệm Toán Hình 9 ôn Tập Chương III Có đáp án
-
Câu Hỏi Ôn Tập Chương III - Hình Học Lớp 11 - HocTapHay