Số Phức Là Gì? Giải Thích Dễ Hiểu Về Số Phức - Minh Nguyen

Số phức

Định nghĩa số phức

Số phức có dạng \(a + bi\)

  • a, b là các số thực
  • i là đơn vị ảo

Với \(i^2 = -1\)

Nếu ta lấy phần thực của số phức thì đó là a. Nếu ta lấy phần ảo của số phức thì đó là b.

Ví dụ số phức:

  • 2 + 3i –> phần thực: 2, phần ảo: 3
  • 4 - 2i
  • -5 + i
  • -6 - 4i
  • 1.2 + 5.1i
  • 4.4 = 4.4 + 0i –> trong trường hợp này, hệ số b của đơn vị ảo bằng 0

Vậy ta có thể thấy rằng số phức là trường hợp tổng quát hơn của số thực. Số thực là 1 trường hợp cụ thể của số phức (khi b = 0). Để dễ hình dung nhất về số phức. Ta tiến hành so sánh và minh họa cụ thể chúng trong không gian 2 chiều trong phần tiếp theo.

Điểm khác giữa số phức và số thực

Tự nhiên thêm đơn vị ảo i vào làm chi không biết (=__=), làm ta rất khó hình dung nếu chỉ nhìn cách biểu diễn con số phức và các công thức tính toán của nó. Nào ta hãy cùng biểu diễn / visualize con số phức đó lên không gian 2 chiều (mặt phẳng) cho dễ tưởng tượng nhé!

Điểm khác số phức và số thực

Như hình minh họa trên, trục x (trục hoành) biểu diễn cho phần thực, còn trục y (trục tung) biểu diễn cho phần ảo. Những con số thực mà ta tính toán trước kia sẽ giống như \(r_3\), \(r_5\) được biểu diễn như trên hình trong không gian phức.

\[(z_6)^2 = (0 - 2i)^2 = (-2i)^2 = 4i^2 = 4(-1) = -4 = r_5\]

Dạng lượng giác của số phức

\(z = r(cos \varphi + isin \varphi) = rcos \varphi + r*i*sin \varphi\)

với r là 1 số thực, \(\varphi\) là góc.

So sánh với định nghĩa, ta thấy rằng:

  • Phần thực: \(a = rcos \varphi\)
  • Phần ảo: \(b = rsin \varphi\)

Điểm đặc biệt là số phức ở dạng lượng giác được biểu diễn theo độ dài vector (r)góc của vector (\(\varphi\)).

Xem Z là điểm có tọa độ \((rcos \varphi, rsin \varphi)\).Thật vậy: \(| \overrightarrow{OZ} | = \sqrt{(rcos \varphi)^2 + (rsin \varphi)^2} = \sqrt{(r^2((cos \varphi)^2 + (sin \varphi)^2)} = \sqrt{(r^2(1)} = r\)

Góc tạo bởi OZ và Ox là:

\[\arctan (\frac{Z_y}{Z_x}) = \arctan (\frac{rsin \varphi}{rcos \varphi}) = \arctan (tan \varphi) = \varphi\]

Với ví dụ hình minh họa ở mục trên, số phức \(z_1 = 2 + 2i\) sẽ được biểu diễn ở dạng lượng giác là: \(r = \sqrt{2^2 + 2^2} = 2\sqrt{2}\)

\[\varphi = \arctan (\frac{2}{2}) = \frac{\pi}{4}\] \[z_1 = 2\sqrt{2}(cos \frac{\pi}{4} + isin \frac{\pi}{4})\]

Nếu thấy hay và dễ hiểu, hãy share cho các bạn cùng lớp nhé! (^^)

Các bài viết tham khảo thêm về Toán học:

  • Đạo hàm là gì? Ý nghĩa của đạo hàm
  • Vi phân là gì? Ứng dụng vi phân vào phép tính gần đúng
  • Giới hạn của hàm số - lim
  • Đạo hàm cấp cao và các công thức đạo hàm thường gặp
  • Ý nghĩa của Tích Vô Hướng
  • Trị riêng và vector riêng của ma trận
  • Số phức là gì? Giải thích dễ hiểu về số phức
  • Tổng hợp các dạng bài tập đạo hàm (2018)
  • Đo góc của hai vector. Ứng dụng: Đo độ tương tự của 2 vector - cosine similarity
  • Hoán vị, chỉnh hợp và tổ hợp
  • Cách tính và ý nghĩa ma trận hiệp phương sai (covariance matrix)
  • Tổng hợp các bài post toán học

Từ khóa » Trục Số Phức