(\sqrt{x^2-3x 2} \sqrt{x^2-4x 3}\ge2\sqrt{x^2-5x 4}\) - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng - Tất cả
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Câu hỏi
Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay
Nguyễn Huy Hải 27 tháng 10 2015 lúc 0:02 Giải bất phương trình: \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
Lớp 9 Toán Những câu hỏi liên quan
- Emilia Nguyen
Giải bất phương trình sau:
\(\sqrt{1+x}-\sqrt{1-x}\ge x\)
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
Xem chi tiết Lớp 10 Toán Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH 1 0
Gửi Hủy
Nguyễn Việt Lâm CTV a/ \(-1\le x\le1\)
\(\Leftrightarrow\frac{2x}{\sqrt{1+x}+\sqrt{1-x}}-x\ge0\)
\(\Leftrightarrow x\left(\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\right)\ge0\)
Do \(0< \sqrt{1+x}+\sqrt{1-x}\le\sqrt{2\left(1+x+1-x\right)}=2\)
\(\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}\ge1\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\ge0\)
\(\Rightarrow x\ge0\)
Vậy nghiệm của BPT là \(0\le x\le1\)
b/ \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}\ge2\sqrt{\left(x-1\right)\left(x-4\right)}\)
- Với \(x=1\) thỏa mãn
- Với \(x\ge4\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}\ge2\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x-4}+\sqrt{x-3}-\sqrt{x-4}\ge0\)
\(\Leftrightarrow\frac{2}{\sqrt{x-2}+\sqrt{x-4}}+\frac{1}{\sqrt{x-3}+\sqrt{x-4}}\ge0\) (luôn đúng)
- Với \(x< 1\Rightarrow\sqrt{2-x}+\sqrt{3-x}\ge2\sqrt{4-x}\)
Tương tự bên trên ta có BPT luôn sai
Vậy nghiệm của BPT đã cho là \(\left[{}\begin{matrix}x=1\\x\ge4\end{matrix}\right.\)
Đúng 0 Bình luận (0) Khách vãng lai đã xóa
Gửi Hủy
- Lê Thúy Kiều
Giải các bất phương trình sau:
a.(x+1)(-x2+3x-2)<0
b.\(\sqrt{x^2-5x+4}+2\sqrt{x+5}>2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
Xem chi tiết Lớp 10 Toán Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH 0 0
Gửi Hủy
- Quỳnh Anh
Giải bất phương trình:
\(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}>\sqrt{x^2-2}+\sqrt{3x^2-5x-1}\)
Xem chi tiết Lớp 10 Toán Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH 0 0
Gửi Hủy
- Linh Diệp
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
Xem chi tiết Lớp 10 Toán §3. Hàm số bậc hai 1 0
Gửi Hủy
Nguyễn Lê Phước Thịnh CTV 2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Đúng 0 Bình luận (0)
Gửi Hủy
- Nguyễn Thị Bích Thuỳ
Giải phương trình:1. \(5x^2+2x+10=7\sqrt{x^4+4}\)2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
Xem chi tiết Lớp 9 Toán Chương III - Hệ hai phương trình bậc nhất hai ẩn 0 0
Gửi Hủy
- Lê Kiều Trinh
giải các phương trình sau:
\(\sqrt{x^2+6x+9}=3x-6\)
\(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\sqrt{4-5x}=2-5x\)
\(\sqrt{4-5x}=\sqrt{2-5x}\)
Xem chi tiết Lớp 9 Toán Ôn tập chương 1: Căn bậc hai. Căn bậc ba 1 0
Gửi Hủy
Nguyễn Hoàng Minh \(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
Đúng 1 Bình luận (0)
Gửi Hủy
- Tú Thanh Hà
-
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
Xem chi tiết Lớp 9 Toán Ôn tập hệ hai phương trình bậc nhất hai ẩn 7 0
Gửi Hủy
𝓓𝓾𝔂 𝓐𝓷𝓱 Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
Đúng 7 Bình luận (3)
Gửi Hủy
Đào Thu Hiền 2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
Đúng 4 Bình luận (0)
Gửi Hủy
Akai Haruma Giáo viên 4 tháng 2 2021 lúc 1:17 Bài 1:
ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$
$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$
Coi đây là PT bậc 2 ẩn $x$
$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:
$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:
$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$
Đúng 4 Bình luận (0)
Gửi Hủy Xem thêm câu trả lời
- Thiên Yết
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Xem chi tiết Lớp 10 Toán Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH 0 0
Gửi Hủy
- Bài 6.20
-
Giải các phương trình sau:
a) \(\sqrt {3{x^2} - 4x - 1} = \sqrt {2{x^2} - 4x + 3} \)
b) \(\sqrt {{x^2} + 2x - 3} = \sqrt { - 2{x^2} + 5} \)
c) \(\sqrt {2{x^2} + 3x - 3} = \sqrt { - {x^2} - x + 1} \)
d) \(\sqrt { - {x^2} + 5x - 4} = \sqrt { - 2{x^2} + 4x + 2} \)
Xem chi tiết Lớp 10 Toán Bài 18: Phương trình quy về phương trình bậc hai 1 0
Gửi Hủy
Hà Quang Minh Giáo viên CTVVIP a) \(\sqrt {3{x^2} - 4x - 1} = \sqrt {2{x^2} - 4x + 3} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}3{x^2} - 4x - 1 = 2{x^2} - 4x + 3\\ \Leftrightarrow {x^2} = 4\end{array}\)
\( \Leftrightarrow x = 2\) hoặc \(x = - 2\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị x=2; x=-2 thỏa mãn
Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;2} \right\}\)
b) \(\sqrt {{x^2} + 2x - 3} = \sqrt { - 2{x^2} + 5} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}{x^2} + 2x - 3 = - 2{x^2} + 5\\ \Leftrightarrow 3{x^2} + 2x - 8 = 0\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = \frac{4}{3}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị \(x = \frac{4}{3}\) thỏa mãn
Vậy tập nghiệm của phương trình là \(x = \frac{4}{3}\)
c) \(\sqrt {2{x^2} + 3x - 3} = \sqrt { - {x^2} - x + 1} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 3 = - {x^2} - x + 1\\ \Leftrightarrow 3{x^2} + 4x - 4\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = \frac{2}{3}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị đều không thỏa mãn.
Vậy phương trình vô nghiệm
d) \(\sqrt { - {x^2} + 5x - 4} = \sqrt { - 2{x^2} + 4x + 2} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l} - {x^2} + 5x - 4 = - 2{x^2} + 4x + 2\\ \Leftrightarrow {x^2} + x - 6 = 0\end{array}\)
\( \Leftrightarrow x = - 3\) hoặc \(x = 2\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=2 thỏa mãn.
Vậy nghiệm của phương trình là x = 2.
Đúng 0 Bình luận (0)
Gửi Hủy Khoá học trên OLM (olm.vn)
- Toán lớp 9
- Ngữ văn lớp 9
- Tiếng Anh lớp 9
- Vật lý lớp 9
- Hoá học lớp 9
- Sinh học lớp 9
- Lịch sử lớp 9
- Địa lý lớp 9
Từ khóa » Căn X^2-3x+2 + Căn X^2-4x+3
-
Giải Phương Trình Sau Căn(x^2-3x+2) + Căn(x^2-4x+3)=2 ... - Hoc247
-
4x +3) >= 2 Căn (x Mũ 2 -5x +4) - Olm
-
Căn (x^2 4x 3) Căn (x^2 X)=căn (3x^2 4x 1) - Giải Pt - Olm
-
Giải Phương Trình Căn(x^2
-
4x +3) >= 2 Căn (x Mũ 2 -5x +4) - Hoc24
-
4x^2 - 3x - 2 = Căn X + 2 . B) Giải Hệ Phương Trình: Lxy - Tự Học 365
-
Int(xdx)/((x^(2)-3x+2)sqrt(x^(2)-4x+3)). - Doubtnut
-
A, Căn X+2=5 B, Căn X-4=căn 3x-2 C, Căn X^2-3x+6=2 D, Căn X^2+4x-3 ...
-
Giải Phương Trình (căn (3x - 2) - Căn (x + 1) = 2(x^2) + X - 6
-
8 Của (1) Căn Bậc Hai Của X^2-4x+3 - Mathway
-
Giúp Mình Giải Các Phương Trình Chứa Căn Sau Với! - HOCMAI Forum