Tích Phân Suy Rộng (Improper Integrals) | Maths 4 Physics & More...

Shortlink: http://wp.me/P8gtr-T

1. Tích phân suy rộng loại 1 (infinite limits of integration): New Update

1.1 Định nghĩa:

Giả sử f(x) xác định trên [a;+∞) và khả tích trên mọi đoạn hữu hạn a ≤ x ≤ b < +∞

Nếu tồn tại giới hạn (hữu hạn hoặc vô cùng):

\mathop {\lim }\limits_{b \to  + \infty } \int\limits_a^b {f(x)dx: = } \int\limits_a^{ + \infty } {f(x)dx}

Thì giới hạn này gọi là tích phân suy rộng của f(x) trên [a;+∞).

Nếu giới hạn này là hữu hạn ta nói tích phân suy rộng \int\limits_a^{ + \infty } {f(x)dx} là hội tụ (integral is convergent)

Nếu giới hạn này là vô cùng hoặc không tồn tại ta nói tích phân suy rộng \int\limits_a^{ + \infty } {f(x)dx} là phân kỳ (integral is divergent).

Ví dụ: \int\limits_1^{ + \infty } {\dfrac{{dx}}{{1 + {x^2}}}} là hội tụ; \int\limits_1^{ + \infty } {\dfrac{{dx}}{x}} là phân kỳ.

Thật vậy ta có:

1. \int\limits_1^{+\infty}{\dfrac{dx}{1+x^2}}=\lim\limits_{b \to +\infty} \int\limits_1^b{\dfrac{dx}{1+x^2}}=\lim\limits_{b \to \infty}\left(\left.{arctanx}\right|_{x=1}^b\right)=\lim\limits_{b \to +\infty} \left(arctanb - \frac{\pi}{4}\right)=\frac{\pi}{4}

2. \int\limits_1^{+\infty}{\dfrac{dx}{x}}=\lim\limits_{b \to +\infty} \int\limits_{1}^{b}{\dfrac{dx}{x}}=\lim\limits_{b \to +\infty} \left. {lnx}\right|_{x=1}^b = \lim\limits_{b \to +\infty} lnb = +\infty .

Ví dụ 2: Tính tích phân suy rộng: I = \int\limits_0^{\infty} t.e^{-2t} dt

Ta có: I = \lim\limits_{b \to +\infty} \int\limits_0^{b} t.e^{-2t} dt (*)

– Trước tiên,  Tính tích phân: \int\limits_0^b t.e^{-2t} dt

Sử dụng công tức tính phân từng phần ta có:

\int\limits_0^b t.e^{-2t} dt = \left( -\dfrac{1}{2}t.e^{-2t} -\dfrac{1}{4}e^{-2t} \right)_{t=0}^b = \left(-\dfrac{1}{2}b.e^{-2b} -\dfrac{1}{4}e^{-2b} + \dfrac{1}{4}\right)

Thế vào (*) ta có:

I = -\dfrac{1}{4}\lim\limits_{b \to \infty} \left((2b-1)e^{-2b} -1 \right) = \dfrac{1}{4}-\dfrac{1}{4}\lim\limits_{b \to \infty} \left( \dfrac{2b-1}{e^{2b}}\right) = \dfrac{1}{4}

(do \lim\limits_{b \to \infty} \dfrac{2b-1}{e^{2b}} \underset{=}{L'H} \lim\limits_{b \to \infty} \dfrac{2}{2e^{2b}} = 0 )

Vậy: I hội tụ và I = \dfrac{1}{4}

1.2 Định nghĩa:

\int\limits_{ - \infty }^c {f(x)dx} : = \mathop {\lim }\limits_{d \to  - \infty } \int\limits_d^c {f(x)dx}

1.3 Tích phân quan trọng:

Bài toán xét sự hội tụ của tích phân: \mathop\int\limits_a^{ + \infty } {\dfrac{{dx}}{{{x^s }}}} {\rm{ a > 0 ; }}{\rm{ s > 0}}

Nếu s \rm{ > 1} thì tích phân hội tụ.

Nếu s \le 1 thì tích phân phân kỳ.

Chứng minh:

Ta có: \mathop\int\limits_a^{+\infty}{\dfrac{dx}{x^s}} = \lim\limits_{c \to +\infty}\int\limits_a^c{\dfrac{dx}{x^s}} = \lim\limits_{c \to +\infty}{\dfrac{1}{1 - s}} \left[ {\dfrac{1}{{{x^{s - 1}}}}} \right]_{x=a}^c

Với s > 1. Khi đó:

\lim\limits_{c \to +\infty}{\dfrac{1}{1-s}} \left(\dfrac{1}{c^{s-1}} - \dfrac{1}{a^{s-1}}\right) = \dfrac{1}{1-s}\left({0- \dfrac{1}{a^{s-1}}}\right) = \dfrac{1}{s-1}.{\dfrac{1}{a^{s-1}}}

Vậy chuỗi hội tụ.

Với s =1: theo ví dụ trên ta có chuỗi phân kỳ.

Với s < 1:

\lim\limits_{c \to +\infty}{\dfrac{1}{1-s}}\left({\dfrac{1}{c^{s-1}}}-{\dfrac{1}{a^{s-1}}}\right)= \lim\limits_{c \to +\infty}\left[{\dfrac{1}{1-s}}\left({c^{1-s}- \dfrac{1}{a^{s-1}}}\right)\right]= + \infty (1-s > 0).

Vậy chuỗi phân kỳ.

1.4 Tiêu chuẩn hội tụ, trường hợp f(x) ≥ 0

1.4.1 Định lý so sánh 1:

Giả sử f(x) và g(x) không âm và khả tích trên [a,b], và f(x) ≤ g(x) ở lân cận +∞ ( tức là x đủ lớn). Khi đó:

  1. Nếu \int\limits_a^{ + \infty } {g(x)dx} hội tụ thì tích phân \int\limits_a^{ + \infty } {f(x)dx} hội tụ
  2. Nếu \int\limits_a^{ + \infty } {f(x)dx} phân kỳ thì tích phân \int\limits_a^{ + \infty } {g(x)dx} phân kỳ.

1.4.2 Định lý so sánh 2:

Giả sử f(x) và g(x) không âm và cùng khả tích trên [a,b], và f(x) ≤ g(x) ở lân cận +∞ ( tức là x đủ lớn).

Nếu \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{f(x)}}{{g(x)}} = k (0 \rm{< k} \rm{< +\infty} ) thì hai tích phân cùng hội tụ hoặc cùng phân kỳ.

Nhận xét:

– Để xét sự hội tụ của tích phân \int\limits_a^{+\infty} f(x) dx , ta cần xây dựng hàm g(x) sao cho \lim\limits_{x \to +\infty} \dfrac{f(x)}{g(x)} = 1 . Nghĩa là, f(x) và g(x) là hai lượng tương đương.

Muốn vậy, ta cần nhận diện và thay thế các VCB, VCL (khi x → +∞ ) có trong f(x) bằng các VCB, VCL tương đương. Tuy nhiên, cần chú ý cả hai hàm f(x) và g(x) phải cùng khả tích trên [a; + ∞).

1.5 Các ví dụ: Xét sự hội tụ của các tích phân:

Ví dụ 1

\int\limits_2^{+\infty}{\dfrac{dx}{lnx}} .

Rõ ràng: hàm f(x) = \dfrac{1}{lnx} là hàm số dương, xác định và liên tục với mọi x thuộc [2,+{\infty}) .

Khi x \to +{\infty} : lnx là VCL nhưng không tìm được VCL tương đương tương ứng. Vì vậy, ta không dùng dấu hiệu so sánh 2.

Ta có thể dùng dấu hiệu so sánh 1. Muốn vậy, cần chặn hàm lnx. Ta dễ dàng có bất đẳng thức sau:

\rm{lnx < } x , \forall x \ge 1

Vậy:

\int\limits_2^{+{\infty}}\dfrac{dx}{lnx} \ge \int\limits_2^{\infty} \dfrac{dx}{x}

Vậy tích phân đã cho phân kỳ.( do tích phân \int\limits_2^{\infty} \dfrac{dx}{x} phân kỳ).

Ví dụ 3

\int\limits_{1}^{+{\infty}}{\dfrac{1}{{\sqrt{1+x}}{\sqrt[3]{1+x^2}}}}dx . $latex $

Xem xét hàm lấy tích phân, ta thấy:

Khi x \to {\infty}

{\sqrt{1+x}} \sim x^{\frac{1}{2}} , {\sqrt[3]{1+x^2}} \sim x^{\frac{2}{3}}

Vậy:

f(x) = \dfrac{1}{{\sqrt{1+x}}{\sqrt[3]{1+x^2}}} \sim \dfrac{1}{x^{\frac{7}{6}}} = g(x)

Mà f(x) và g(x) cùng khả tích trên [1;+∞) nên \int\limits_1^{+\infty} f(x) dx \int\limits_1^{+\infty} g(x) dx cùng hội tụ hoặc cùng phân kỳ.

Mặt khác: \int\limits_1^{+\infty} \dfrac{1}{x^{\frac{7}{6}}} dx hội tụ. (do s = 7/6 > 1)

Vậy tích phân I3 hội tụ.

Ví dụ 4.

I_4=\int\limits_0^{+\infty}{\dfrac{\sqrt[3]{x}}{1+x^2}} dx . $latex $

Khi x \to +\infty ta có:

f(x) = \dfrac{\sqrt[3]{x}}{1+x^2} \sim \dfrac{x^{\frac{1}{3}}}{x^2} = \dfrac{1}{x^{\frac{5}{3}}} = g(x)

Tuy nhiên, f(x) xác định và liên tục với mọi x \ge 0 , còn g(x) không xác định tại x = 0 nên ta chưa thể dùng dấu hiệu so sánh 2 được.

Khi đó, tách I4 thành 2 tích phân ta có:

I_4 = \int\limits_0^{1} \dfrac{\sqrt[3]{x}}{1+x^2} dx + \int\limits_1^{\infty} \dfrac{\sqrt[3]{x}}{1+x^2} dx

– Do \dfrac{\sqrt[3]{x}}{1+x^2} xác định và liên tục trên [0;1] nên \int\limits_0^1 \dfrac{\sqrt[3]{x}}{1+x^2} dx là tích phân xác định nên hội tụ.

\int\limits_1^{+\infty} \dfrac{\sqrt[3]{x}}{1+x^2} dx \sim \int\limits_1^{+\infty} \dfrac{dx}{x^{5/3}} nên hội tụ.

Vậy tích phân I4 hội tụ.

Đánh giá:

Chia sẻ:

  • In
  • PDF
  • Email
  • Facebook
Thích Đang tải...

Trang: 1 2 3

Thảo luận

172 bình luận về “Tích phân suy rộng (Improper Integrals)

  1. Hình đại diện của thanh xuân

    làm sao biết được là hàm đó liên tục trên đâu ah.cách chứng minh ấy ah

    ThíchThích

    Được đăng bởi thanh xuân | 07/01/2015, 23:23 Reply to this comment
« Bình luận cũ hơn

Bình luận về bài viết này Hủy trả lời

Δ

Từ khóa » Tính Tích Phân Suy Rộng Ln/x^3