Tìm 2 Số Biết Tổng Của Chúng Bằng 10 Và Tổng Các Bình Phương ... - Olm

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM
Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Cập nhật Hủy Cập nhật Hủy
  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tạo câu hỏi Hủy Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
NN no name 26 tháng 5 2015 - olm

tìm 2 số biết tổng của chúng bằng 10 và tổng các bình phương của chúng bằng 250

#Toán lớp 9 2 DN Đỗ Ngọc Hải 26 tháng 5 2015

so thu nhat : -5

so thu 2: 15

Đúng(0) TT thanh tung 1 tháng 6 2018

Số thứ nhất : -5

Số thứ hai : 15

Đ/S : ...

....

Đúng(0) Xem thêm câu trả lời NN no name 26 tháng 5 2015 - olm

tìm 2 số biết tổng của chúng bằng 10 và tổng các bình phương bằng 250

#Toán lớp 9 1 NT Nguyễn Tuấn Tài 26 tháng 5 2015

trong câu hỏi tương tự a có dạng như vậy

Đúng(0) D ѕнєу 8 tháng 6 2021

Tìm 2 số biết tổng của chúng bằng 19 và tổng các bình phương của chúng bằng 185

#Toán lớp 9 1 AT An Thy 8 tháng 6 2021

gọi 2 số đó là a và b \(\left(a,b>0\right)\)

Theo đề: \(\left\{{}\begin{matrix}a+b=19\left(1\right)\\a^2+b^2=185\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow\left(a+b\right)^2=19^2=361\left(3\right)\)

Lấy \(\left(3\right)-\left(2\right)\Rightarrow2ab=176\Rightarrow ab=88\left(4\right)\)

Từ (1) và (4) \(\Rightarrow a,b\) là nghiệm của pt \(x^2-19x+88=0\)

\(\Rightarrow\left(x-11\right)\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=8\\b=11\end{matrix}\right.\\\left\{{}\begin{matrix}a=11\\b=8\end{matrix}\right.\end{matrix}\right.\)

Vậy 2 số cần tìm là 8 và 11

Đúng(2) KH Kim Hà Hoàng Anh 8 tháng 6 2021 - olm

Tìm 2 số biết tổng của chúng bằng 19 và tổng các bình phương của chúng bằng 185

#Toán lớp 9 3 ND Noob Dino 2K8 ( ɻɛɑm roblox + *•.¸♡... 8 tháng 6 2021

Vậy 2 số cần tìm là 8 và 11Gọi 2 số tự nhiên cần tìm là a,b (a>b)Theo giả thiết, ta cóa + b = 19 và a^2 + b^2 = 185=> 2ab = (a+b)^2 - (a^2+b^2) = 176 <=> ab = 88=> a,b là nghiệm của pt x^2 - 19x + 88 = 0 (*)(*) <=> (x-11)(x-8) = 0 <=> x= 8 hoặc x = 11=> (a,b) = (11;8)

Đúng(0) O Online 8 tháng 6 2021

gọi x là số tự nhiên thứ nhất , y là số tự nhiên thứ hai . (x,y > 0)

tổng của chúng bằng 19

=> x + y = 19

<=> x = 19 - y

tổng các bình phương của chúng bằng 185

=> x^2 + y^2 = 185

<=> (19 - y)^2 + y^2 = 185

<=> 361 - 38y + y^2 + y^2= 185

<=> 2y^2 - 38y + 176 = 0

<=> y = 8 hoặc y = 11

y = 8 => x = 19 - 8 = 11

y = 11 => x = 19 - 11 = 8

vậy hai số tự nhiên đó là 8 và 11

Đúng(0) Xem thêm câu trả lời CG Charlotte Grace 17 tháng 4 2021

Tìm 1 CSN có 4 số hạng biết tổng của chúng bằng 15 và tổng các bình phương của chúng bằng 85

#Toán lớp 11 1 NV Nguyễn Việt Lâm Giáo viên 17 tháng 4 2021

Gọi các số hạng của CSN là \(u_1;u_1q;u_1q^2;u_1q^3\)

\(\Rightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2+q^3\right)=15\\u_1^2\left(1+q^2+q^4+q^6\right)=85\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1^2\left(q+1\right)^2\left(q^2+1\right)^2=225\\u_1^2\left(q^2+1\right)\left(q^4+1\right)=85\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(q+1\right)^2\left(q^2+1\right)}{q^4+1}=\dfrac{45}{17}\)

\(\Leftrightarrow14q^4-17q^3-17q^2-17q+14=0\)

Với \(q=0\) ko phải nghiệm, với \(q\ne0\)

\(\Leftrightarrow14\left(q^2+\dfrac{1}{q^2}\right)-17\left(q+\dfrac{1}{q}\right)-17=0\)

\(\Leftrightarrow14\left(q+\dfrac{1}{q}\right)^2-17\left(q+\dfrac{1}{q}\right)-45=0\Rightarrow\left[{}\begin{matrix}q+\dfrac{1}{q}=-\dfrac{9}{7}\\q+\dfrac{1}{q}=\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}7q^2+9q+7=0\\2q^2-5q+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow u_1=\dfrac{15}{1+q+q^2+q^3}=...\)

Đúng(1) QH Quang Huy Đặng 31 tháng 10 2023

đoạn cuối là sao vậy ạ

Đúng(0) PT Pham Trong Bach 29 tháng 4 2017 Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120. A. 1,5,6,8 B. 2,4,6,8 C. 1,4,6,9 D....Đọc tiếp

Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120.

A. 1,5,6,8

B. 2,4,6,8

C. 1,4,6,9

D. 1,4,7,8

#Toán lớp 11 1 CM Cao Minh Tâm 29 tháng 4 2017

Chọn đáp án B

Đúng(0) T títtt 16 tháng 9 2023

tìm 3 số hạng liên tiếp của 1 cấp số cộng biết tổng của chúng bằng 12 và tổng các bình phương của chúng bằng 66

#Toán lớp 11 2 AH Akai Haruma Giáo viên 16 tháng 9 2023

Lời giải:

Gọi số hạng đầu tiên là $a$ và công sai $d$. Khi đó số hạng thứ 2 và 3 lần lượt là $a+d, a+2d$

Theo bài ra ta có:

$a+(a+d)+(a+2d)=12$

$\Rightarrow a+d=4$

$a^2+(a+d)^2+(a+2d)^2=66$

$\Leftrightarrow 3a^2+5d^2+6ad=66$

$\Leftrightarrow 3(4-d)^2+5d^2+6(4-d)d=66$

$\Leftrightarrow 2d^2-18=0$

$\Leftrightarrow d=\pm 3$

Nếu $d=3$ thì $a=1$. Khi đó 3 số cần tìm là $1,4, 7$

Nếu $d=-3$ thì $a=7$. Khi đó 3 số cần tìm là $7, 4, 1$

Đúng(0) ND Nguyễn Đức Trí 16 tháng 9 2023

\(S_3=\dfrac{3\left[2u_1+2d\right]}{2}\)

\(\Leftrightarrow2u_1+2d=\dfrac{2S_3}{3}\)

\(\Leftrightarrow2\left(u_1+d\right)=\dfrac{2S_3}{3}\)

\(\Leftrightarrow u_1+d=\dfrac{S_3}{3}=\dfrac{12}{3}=4\)

\(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_2=4\\u_3=7\end{matrix}\right.\)

\(u_1^2+u_2^2+u_3^2=1^2+4^2+7^2=66\) (thỏa đề bài)

Vậy 3 số hạng liên tiếp của 1 cấp số cộng là : \(1;4;7\)

Đúng(0) Xem thêm câu trả lời LT lang tung son 25 tháng 10 2017 - olm

Tìm 2 số biết tỉ số của chúng bằng 5/7 và tổng các bình phương của chúng là 4736

#Toán lớp 7 1 PN Phan Nghĩa 25 tháng 10 2017

Bấm vô đây:

Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath

Đúng(0) LT le thi van anh 5 tháng 11 2015 - olm

tìm hai số biết tỉ số của chúng bằng 5/7 và tổng các bình phương của chúng bằng 4736 ?

#Toán lớp 7 1 YN Yen Nhi 18 tháng 9 2021

Gọi hai số cần tìm lần lượt là a và b

Tỷ số của hai số là \(\frac{5}{7}\Rightarrow a:b=\frac{5}{7}\) (1)

Theo đề ra, ta có: Tổng các bình phương của chúng bằng 4736 \(\Rightarrow a^2+b^2=4736\) (2)

Từ (1) và (2) ta có hệ:

\(\hept{\begin{cases}a:b=\frac{5}{7}\\a^2+b^2=4736\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5y}{7}\\\left(\frac{5y}{7}\right)^2+y^2=4736\end{cases}}}\Rightarrow\hept{\begin{cases}x=\pm40\\y=\pm56\end{cases}}\)

Đúng(0) PT phạm thuỳ linh 4 tháng 8 2018 - olm

tìm hai số biết hiệu của chúng bằng 1 và tổng các bình phương của chúng bằng 313

#Toán lớp 8 1 NT Nguyễn Tũn 4 tháng 8 2018

Hãy tích cho tui đi

khi bạn tích tui

tui không tích lại bạn đâu

THANKS

Đúng(0) Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • DH Đỗ Hoàn VIP 60 GP
  • NT Nguyễn Tuấn Tú 41 GP
  • NG Nguyễn Gia Bảo 26 GP
  • 1 14456125 17 GP
  • VN vh ng 16 GP
  • N ngannek 10 GP
  • TN Trương Nguyễn Anh Thư 10 GP
  • H Hbth 8 GP
  • LN Lê Như Bảo Nam 6 GP
  • TT tran trong 4 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học toán với OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Tìm Csn Có 4 Số Hạng Tổng Của Chúng Là 15 Tổng Bình Phương Của Chúng Là 85