Tìm Giá Trị Lớn Nhất, Giá Trị Nhỏ Nhất Của Hàm Số Cực Hay - Toán Lớp 12
Có thể bạn quan tâm
- Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Bài viết Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
- Cách giải bài tập Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
- Bài tập vận dụng Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số (cực hay)
Bài giảng: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
Quảng cáo1. Định nghĩa: Cho hàm số y = f(x) xác định trên miền D
Số M gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu:
Kí hiệu:
Số m gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu:
Kí hiệu:
2. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sử dụng bảng biến thiên
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm các nghiệm của f'(x) và các điểm f'(x)trên K.
Bước 3. Lập bảng biến thiên của f(x) trên K.
Bước 4. Căn cứ vào bảng biến thiên kết luận
3. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số không sử dụng bảng biến thiên
Trường hợp 1. Tập K là đoạn [a; b]
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm tất cả các nghiệm xi ∈[a; b] của phương trình f'(x) = 0 và tất cả các điểm αi ∈ [a; b] làm cho f'(x) không xác định.
Bước 3.Tính f(a), f(b), f(xi), f(αi).
Bước 4. So sánh các giá trị tính được và kết luận
Trường hợp 2. Tập K là khoảng (a; b)
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm tất cả các nghiệm xi ∈ (a; b) của phương trình f'(x) = 0 và tất cả các điểm αi ∈ (a; b) làm cho f'(x) không xác định.
Bước 3. Tính
Bước 4. So sánh các giá trị tính được và kết luận
Chú ý: Nếu giá trị lớn nhất (nhỏ nhất) là A hoặc B thì ta kết luận không có giá trị lớn nhất (nhỏ nhất).
Quảng cáoVí dụ minh họa
Ví dụ 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x3 - 3x2 - 9x + 2 trên đoạn [-2; 2].
Hướng dẫn
Ta có: y' = 3x2 - 6x - 9 = 0 ⇔
Mà y(-2) = 0; y(2) = -20; y(-1) = 7.
Suy ra
Ví dụ 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Hướng dẫn
Tập xác định: D = [-2; 2]. Ta có:
Khi đó y' = 0 ⇔
Có y(√2) = 2√2, y(2) = 2 ,y(-2) = -2.
Vậy
Ví dụ 3: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x - sin2x trên đoạn [π/2; π]
Hướng dẫn
Ta có y' = 1 - 2cos2x = 0 ⇔ cos2x = 1/2 = cos π/3 ⇔ x = ±π/6 + kπ.
Xét x ∈[(-π)/2; π] ta được x = ±π/6; x = 5π/6.
f((-π)/2) = -π/2; f(π) = π; f((-π)/6) = -π/6 + √3/2; f(π/6) = π/6 - √3/2; f(5π/6) = 5π/6 + √3/2.
Suy ra
B. Bài tập vận dụng
Câu 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x3 - 3x2 - 9x + 35 trên đoạn [-4; 4]
Lời giải:
Hàm số f(x) liên tục trên [-4; 4]
Ta có f'(x) = 3x2 - 6x - 9; f'(x) = 0 ⇔
f(-4) = -41; f(-1) = 40; f(3) = 8;f(4) = 15.
Do đó Quảng cáo
Câu 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên [0; 2]
Lời giải:
Hàm số đã cho xác định và liên tục trên đoạn [0; 2].
Ta có
Tính y(0) = 1/3; y(2) = -5.
Suy ra
Câu 3: Gọi m là giá trị nhỏ nhất của hàm số trên đoạn [2; 4]. Tìm m.
Lời giải:
Hàm số liên tục trên đoạn [2;4].
Ta có
Tính y'(2) = 7; y'(4) = 19/3; y'(3) = 6.
Suy ra m = 6.
Câu 4: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [-1; 6]
Lời giải:
Hàm số đã cho xác định và liên tục trên đoạn [-1; 6].
Ta có:
y' = 0 ⇔ x = 5/2 ∈[-1; 6].
y(-1) = y(6) = 0, y(5/2) = 7/2.
Vậy
Câu 5: Tìm tổng giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) = |x| + 3 trên [-1; 1]
Lời giải:
Ta có
Ta có bảng biến thiên của hàm số đã cho.
Vậy
Câu 6: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0; 3]
Lời giải:
Hàm số đã cho xác định và liên tục trên đoạn [0; 3].
Ta có:
y' = 0 ⇔
Tính y(1) = -5√5; y(0) = -12; y(2) = -8√2; y(3) = -3√13.
Suy ra
Câu 7: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2sin2 x + 2sinx - 1 bằng
Lời giải:
TXĐ: D = R . Đặt t = sinx, -1 ≤ t ≤ 1. Khi đó y = f(t) = 2t2 + 2t - 1
Ta tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(t) trên đoạn [-1; 1]. Đó cũng là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên R.
Ta có: f'(t) = 4t + 2; f'(t) = 0 ⇔ t = -1/2 ∈(-1; 1); f(-1) = -1; f(-1/2) = -3/2; f(1) = 3
Do đó
Quảng cáoCâu 8: Cho hàm số Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Tìm M và m.
Lời giải:
Đặt t = sinx, -1 ≤ t ≤ 1 ⇒
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Trắc nghiệm Tìm GTLN GTNN của hàm số
- Dạng 2: Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện
- Trắc nghiệm Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- 30 đề toán, lý hóa, anh, văn 2025 (100-170k/1 cuốn)
- 30 đề Đánh giá năng lực đại học quốc gia HN 2025 (cho 2k7)
- 30 đề Đánh giá năng lực đại học quốc gia tp. Hồ Chí Minh 2025 (cho 2k7)
ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12
Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Từ khóa » Các Bài Toán Tìm Gtln Gtnn Lớp 12
-
Chuyên Đề Toán Lớp 12: Hướng Dẫn Giải Bài Tập Tìm Max - Min ...
-
Các Dạng Bài Tập Giá Trị Lớn Nhất, Giá Trị Nhỏ Nhất Của Hàm Số Chọn ...
-
Tìm Giá Trị Lớn Nhất Nhỏ Nhất Của Hàm Số (Kèm Tài Liệu) - VerbaLearn
-
Các Dạng Bài Tập Tìm Giá Trị Lớn Nhất (GTLN), Giá Trị Nhỏ Nhất (GTNN ...
-
"Xử Gọn" Bài Tập Tìm GTLN GTNN Của Hàm Số Lớp 12 Về Lượng Giác
-
Bài Toán Thực Tế Liên Quan đến GTLN - GTNN
-
120 Bài Tập Trắc Nghiệm GTLN, GTNN Của Hàm Số - Lớp 12
-
Tìm GTLN, GTNN Của Hàm Số Lớp 12 Chỉ Trong Tích Tắc Teen 2K1 Biết ...
-
Bài Toán Tìm Giá Trị Nhỏ Nhất, Giá Trị Lớn Nhất Có Chứa Tham Số
-
Bài Tập Tìm GTLN - GTNN Của Hàm Số Bằng Máy Tính Môn Toán Lớp 12
-
Toán 12 Bài 3: Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số
-
Cách Tìm Gtln Gtnn Của Hàm Số Lớp 12, &Mdash Đọc Là Đỗ
-
Hướng Dẫn Giải Các Dạng Toán Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của ...
-
Giá Trị Lớn Nhất Giá Trị Nhỏ Nhất Của Hàm Số – Giải Bài Tập SGK Toán 12