Tính Diện Tích Hình Phẳng Giới Hạn Bởi Các đường Y = X3, Y = 0 Và ...

YOMEDIA NONE Tính diện tích hình phẳng giới hạn bởi các đường y = x3, y = 0 và hai đường thẳng x = -1;x = 2 ADMICRO
  • Câu hỏi:

    Tính diện tích hình phẳng giới hạn bởi các đường y = x3, y = 0 và hai đường thẳng x = -1;x = 2

    • A. \(\frac{{17}}{8}\)
    • B. \(\frac{{17}}{4}\)
    • C. \(\frac{{15}}{4}\)
    • D. \(\frac{{15}}{8}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 57687

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi HK2 môn Toán 12 Trường THPT Đoàn Thượng - Hải Dương năm học 2017 - 2018

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • F(x) là một nguyên hàm của hàm số \(y = x{e^{{x^2}}}.\) Hàm số nào sau đây không phải là F(x)?
  • Tìm nguyên hàm của hàm số \(f\left( x \right) = 7{x^5}\)
  • Tính nguyên hàm \(\int {\left( {\frac{1}{{2x + 3}}} \right){\rm{d}}x} .\)
  • Cho f(x), g(x) là các hàm số xác định và liên tục trên R. Trong các mệnh đề sau, mệnh đề nào sai?
  • Cho hàm số f(x) thỏa mãn các điều kiện \(f \left( x \right) = 2 + \cos 2x\) và \(f\left( {\frac{\pi }{2}} \right) = 2\pi \).
  • Cho f(x), g(x) là hai hàm số liên tục trên R. Chọn mệnh đề sai trong các mệnh đề sau:
  • Tính tích phân \(I = 2\int\limits_0^3 {\frac{{{x^2}{\rm{d}}x}}{{\left( {x + 1} \right)\sqrt {x + 1} }}} \)
  • Tính tích phân \(I = \int\limits_0^1 {\frac{{x{\rm{d}}x}}{{{x^2} + 1}}} .\)
  • Tích phân \(I = \int_0^{\frac{\pi }{3}} {x\sin 2xdx = \frac{\pi }{a} + \frac{{\sqrt 3 }}{b}} \). Khi đó giá trị a + b là
  • Biết rằng \(\int\limits_0^1 {\frac{{2x + 3}}{{2 - x}}} dx = a\ln 2 + b\) với \(a,b \in Q\).
  • Cho \(\int\limits_0^{\frac{\pi }{2}} {f(x)dx = 5} .\). Tính \(\int\limits_0^{\frac{\pi }{2}} {\left[ {f(x) + 2\cos x} \right]} dx.\)
  • Cho hàm số f(x) liên tục trên R và \(\int\limits_0^{{\pi ^2}} {f(x)dx = 2018} \). Tính \(I = \int\limits_0^\pi  {xf({x^2}} )dx.\)
  • Cho f(x) là hàm số chẵn \(\int\limits_{ - 3}^0 {f\left( x \right)} dx = a\).  Chọn khẳng định đúng trong các khẳng định sau
  • Tính diện tích hình phẳng giới hạn bởi các đường y = x3, y = 0 và hai đường thẳng x = -1;x = 2
  • Diện tích hình phẳng giới hạn bởi các đồ thị hàm số \(y = {x^3} - x;y = 2x\) và các đường x = -1; x = 1 được
  • Hình phẳng giới hạn bởi đồ thị hàm số y = 2x - x2 và y = x khi quay quanh trục Ox tạo thành khối tròn xoay c�
  • Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường y = tanx, y = 0, x = 0, x=pi/3 quanh trục Ox
  • Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: Tâm của (S1) thuộc (S2) và ngược lại.
  • Một vật chuyển động với vận tốc v(t), có gia tốc là \(a\left( t \right) = 3{t^2} + t\,\left( {m/{s^2}} \right)\).
  • Một khối cầu có bán kính 5dm, người ta cắt bỏ 2 phần bằng 2 mặt phẳng vuông góc bán kính và cách tâm 3dm để là
  • Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3 - 2i điểm B biểu diễn số phức -1 + 6i.
  • Tìm số phức liên hợp của số phức z = (-1 + 4i)(5 + 2i)
  • Cho số phức \(z = 1 + \sqrt 3 i\). Khi đó:
  • Cho số phức z thỏa mãn iz + 2 – i = 0.
  • Cho hai số phức \({z_1} = 1 - 2i,{z_2} = x - 4 + yi\) với \(x,y \in R\). Tìm cặp (x; y) để \({z_2} = 2{\bar z_1}\).
  • Gọi z1; z2 là hai nghiệm phức của phương trình \({z^2} - 2z + 2 = 0\). Tính \(M = z_1^{2000} + z_2^{1000}\)
  • Tính môđun của số phức z = 3 - 4i
  • Cho số phức z thỏa mãn |z - 1 = |z - i|. Tìm mô đun nhỏ nhất của số phức w = 2z + 2 - i.
  • Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn \(2\left| {z - i} \right| = \left| {z - \overline z&n
  • Trong không gian với hệ tọa độ Oxyz cho \(\overrightarrow u  = \left( { - 2;\,\,3;\,\,0} \right),\overrightarrow v  = \left(
  • Trong Câu 1:không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1\\y = 2 + t\\z = 3 + 2t\end{arra
  • Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( {1; - 1;1} \right),{\rm{ }}B\left( {2;1; - 2} \right),{\rm{ }}C\left( {0;0
  • Trong không gian với hệ tọa độ Oxyz, cho véc tơ \(\overrightarrow {n\,}  = \left( {2; - 4;6} \right)\).
  • Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + y = 0.
  • Trong không gian với hệ toạ độ Oxyz cho ba điểm A(2; 0; 0), B(0; -3; 0), C(0; 0; 5). Viết phương trình mặt phẳng (ABC).
  • Trong không gian Oxyz cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{1}.
  • Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-1; 0), B(-1; 2; -2) và C(3; 0; -4).
  • Trong không gian với hệ tọa độ Oxyz cho điểm A(1; -1; 3) và hai đường thẳng \({d_1}:\frac{{x - 4}}{1} = \frac{{y +
  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x + 2y -2z + 1 = 0 và điểm M(1;-2;2).
  • Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-2; 3; 1) và B(5; 6; 2).
  • Trong không gian với hệ trục Oxyz, cho đường thẳng \(d:\,x - 1 = \frac{{y - 2}}{2} = \frac{{z - 4}}{3}\) và mặt phẳng (P):
  • Trong không gian với hệ tọa độ Oxyz cho M(2; 3;-1), N(-2;-1; 3).
  • Cho đường thẳng \(\left( d \right):\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = 3t\end{array} \right.
  • Viết phương trình mặt cầu có tâm I(-1; 2;3) và tiếp xúc với mặt phẳng (P): 2x - y - 2z + 1= 0
  • Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(-1; 2;1) và đi qua điểm A(0; 4; -1) là
  • Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm \(A\left( {1;2;1} \right),B\left( {3;2;3} \right),\) 
  • Trong không gian với hệ tọa độ Oxyz, cho bốn điểm \(A\left( {1; - 2;0} \right),B\left( {0; - 1;1} \right),C\left( {2;1; - 1} \righ
  • Trong không gian với hệ trục toạ độ Oxyz cho mặt cầu (S) có đường tròn lớn ngoại tiếp tam giác ABC với A(0; 2; 4),
  • Trong không gian Oxyz cho các mặt phẳng \(\left( P \right):x - y + 2z + 1 = 0,\left( Q \right):2x + y + z - 1 = 0\).
  • Trong không gian với hệ toạ độ Oxyz, gọi \(\left( \alpha  \right)\) là mặt phẳng đi qua hai điểm A(2; 0; 1) v
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Giải tích 12 Chương 3

Đề thi giữa HK1 môn Toán 12

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn bài Người lái đò sông Đà

Đề thi giữa HK1 môn Ngữ Văn 12

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 7 Lớp 12 Economic Reforms

Tiếng Anh 12 mới Review 1

Đề thi giữa HK1 môn Tiếng Anh 12

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Vật lý 12 Chương 3

Đề thi giữa HK1 môn Vật Lý 12

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 4

Đề thi giữa HK1 môn Hóa 12

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 5

Đề thi giữa HK1 môn Sinh 12

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Đề thi giữa HK1 môn Lịch Sử 12

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

Đề thi giữa HK1 môn Địa lý 12

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Đề thi giữa HK1 môn GDCD 12

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Đề thi giữa HK1 môn Công nghệ 12

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Đề thi giữa HK1 môn Tin học 12

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

Sóng- Xuân Quỳnh

Người lái đò sông Đà

Quá trình văn học và phong cách văn học

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Đất Nước- Nguyễn Khoa Điềm

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Diện Tích Hình Phẳng Giới Hạn Bởi Y=x^3 Y=0 X=-1 X=2