Toán 10 Bài 1: Bất đẳng Thức - Hoc247
Có thể bạn quan tâm
DẠNG TOÁN 1: SỬ DỤNG ĐỊNH NGHĨA VÀ TÍCH CHẤT CƠ BẢN
1. Phương pháp giải
Để chứng minh bất đẳng thức(BĐT) \(A \ge B\) ta có thể sử dụng các cách sau:
Ta đi chứng minh \(A - B \ge 0\). Để chứng minh nó ta thường sử dụng các hằng đẳng thức để phân tích \(A - B\) thành tổng hoặc tích của những biểu thức không âm.
Xuất phát từ BĐT đúng, biến đổi tương đương về BĐT cần chứng minh.
2. Các ví dụ minh họa
Loại 1: Biến đổi tương đương về bất đẳng thức đúng
Ví dụ 1:
Cho hai số thực \(a,b,c\). Chứng minh rằng các bất đẳng thức sau
a) \(ab \le \frac{{{a^2} + {b^2}}}{2}\)
b) \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\)
c) \(3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {\left( {a + b + c} \right)^2}\)
d) \({\left( {a + b + c} \right)^2} \ge 3\left( {ab + bc + ca} \right)\)
Hướng dẫn:
a) Ta có \({a^2} + {b^2} - 2ab = {(a - b)^2} \ge 0 \Rightarrow {a^2} + {b^2} \ge 2ab\). Đẳng thức\( \Leftrightarrow a = b\).
b) Bất đẳng thức tương đương với \({\left( {\frac{{a + b}}{2}} \right)^2} - ab \ge 0\)
\( \Leftrightarrow {a^2} + 2ab + {b^2} \ge 4ab \Leftrightarrow {\left( {a - b} \right)^2} \ge 0\) (đúng) ĐPCM.
Đẳng thức xảy ra\( \Leftrightarrow a = b\)
c) BĐT tương đương \(3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\)
\( \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\) (đúng) ĐPCM.
Đẳng thức xảy ra\( \Leftrightarrow a = b = c\)
d) BĐT tương đương \({a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca \ge 3\left( {ab + bc + ca} \right)\)
\( \Leftrightarrow 2\left( {{a^2} + {b^2} + {c^2}} \right) - 2\left( {ab + bc + ca} \right) \ge 0\) \( \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\) (đúng) ĐPCM.
Đẳng thức xảy ra\( \Leftrightarrow a = b = c\)
Nhận xét: Các BĐT trên được vận dụng nhiều, và được xem như là "bổ đề" trong chứng minh các bất đẳng thức khác.
Ví dụ 2:
Cho năm số thực \(a,b,c,d,e\). Chứng minh rằng
\({a^2} + {b^2} + {c^2} + {d^2} + {e^2} \ge a(b + c + d + e)\).
Hướng dẫn:
Ta có : \({a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a(b + c + d + e) = \)
\( = (\frac{{{a^2}}}{4} - ab + {b^2}) + (\frac{{{a^2}}}{4} - ac + {c^2}) + (\frac{{{a^2}}}{4} - ad + {d^2}) + (\frac{{{a^2}}}{4} - ae + {e^2})\)
\( = {(\frac{a}{2} - b)^2} + {(\frac{a}{2} - c)^2} + {(\frac{a}{2} - d)^2} + {(\frac{a}{2} - e)^2} \ge 0 \Rightarrow \) đpcm.
Đẳng thức xảy ra \( \Leftrightarrow b = c = d = e = \frac{a}{2}\).
Loại 2: Xuất phát từ một BĐT đúng ta biến đổi đến BĐT cần chứng minh
Đối với loại này thường cho lời giải không được tự nhiên và ta thường sử dụng khi các biến có những ràng buộc đặc biệt
* Chú ý hai mệnh đề sau thường dùng
\(a \in \left[ {\alpha ;\beta } \right] \Rightarrow \left( {a - \alpha } \right)\left( {a - \beta } \right) \le 0\) \(\left( * \right)\)
\(a,b,c \in \left[ {\alpha ;\beta } \right] \Rightarrow \left( {a - \alpha } \right)\left( {b - \alpha } \right)\left( {c - \alpha } \right) + \left( {\beta - a} \right)\left( {\beta - b} \right)\left( {\beta - c} \right) \ge 0\left( {**} \right)\)
Ví dụ 1:
Cho a,b,c là độ dài ba cạnh tam giác. Chứng minh rằng :\({a^2} + {b^2} + {c^2} < 2(ab + bc + ca)\).
Hướng dẫn:
Vì a,b,c là độ dài ba cạnh tam giác nên ta có :
\(a + b > c \Rightarrow ac + bc > {c^2}\). Tương tự
\(bc + ba > {b^2};{\rm{ }}ca + cb > {c^2}\) cộng ba BĐT này lại với nhau ta có đpcm
Nhận xét:
* Ở trong bài toán trên ta đã xuất phát từ BĐT đúng đó là tính chất về độ dài ba cạnh của tam giác. Sau đó vì cần xuất hiện bình phương nên ta nhân hai vế của BĐT với c.
Ngoài ra nếu xuất phát từ BĐT \(|a - b| < c\) rồi bình phương hai vế ta cũng có được kết quả.
Ví dụ 2:
Cho \(a,b,c \in [0;1]\). Chứng minh : \({a^2} + {b^2} + {c^2} \le 1 + {a^2}b + {b^2}c + {c^2}a\)
Hướng dẫn:
Cách 1:
Vì \(a,b,c \in [0;1] \Rightarrow (1 - {a^2})(1 - {b^2})(1 - {c^2}) \ge 0\)
\( \Leftrightarrow 1 + {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} - {a^2}{b^2}{c^2} \ge {a^2} + {b^2} + {c^2}\) (*)
Ta có : \({a^2}{b^2}{c^2} \ge 0;{\rm{ }}{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} \le {a^2}b + {b^2}c + {c^2}a\) nên từ (*) ta suy ra
\({a^{\rm{2}}} + {b^2} + {c^2} \le 1 + {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} \le 1 + {a^2}b + {b^2}c + {c^2}a\) đpcm.
Cách 2:
BĐT cần chứng minh tương đương với \({{\rm{a}}^{\rm{2}}}\left( {1 - b} \right) + {b^2}\left( {1 - c} \right) + {c^2}\left( {1 - a} \right) \le 1\)
Mà \(a,b,c \in \left[ {0;1} \right]\) \( \Rightarrow {a^2} \le a,{b^2} \le b,{c^2} \le c\) do đó
\({a^2}\left( {1 - b} \right) + {b^2}\left( {1 - c} \right) + {c^2}\left( {1 - a} \right) \le a\left( {1 - b} \right) + b\left( {1 - c} \right) + c\left( {1 - a} \right)\)
Ta chỉ cần chứng minh \(a\left( {1 - b} \right) + b\left( {1 - c} \right) + c\left( {1 - a} \right) \le 1\)
Thật vậy: vì \(a,b,c \in \left[ {0;1} \right]\) nên theo nhận xét \(\left( {**} \right)\) ta có
\(abc + \left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right) \ge 0\)
\( \Leftrightarrow \)\(a + b + c - \left( {ab + bc + ca} \right) \le 1\)
\( \Leftrightarrow \)\(a\left( {1 - b} \right) + b\left( {1 - c} \right) + c\left( {1 - a} \right) \le 1\)
vậy BĐT ban đầu được chứng minh.
DẠNG TOÁN 2: SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY(côsi) ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC VÀ TÌM GIÁ TRI LỚN NHẤT, NHỎ NHẤT
1. Phương pháp giải
Một số chú ý khi sử dụng bất đẳng thức côsi:
* Khi áp dụng bđt côsi thì các số phải là những số không âm
* BĐT côsi thường được áp dụng khi trong BĐT cần chứng minh có tổng và tích
* Điều kiện xảy ra dấu ‘=’ là các số bằng nhau
* Bất đẳng thức côsi còn có hình thức khác thường hay sử dụng
Đối với hai số:\({x^2}\,\, + \,{y^2}\,\, \ge \,\,2xy;\,\,\,\,\,\,\,\,{x^2}\,\, + \,{y^2}\,\, \ge \,\,\frac{{{{(x\, + \,y)}^2}}}{2};\,\,\,\,\,\,\,xy \le \,\,{\left( {\frac{{x + y}}{2}} \right)^2}\).
Đối với ba số: \(abc \le \frac{{{a^3} + {b^3} + {c^3}}}{3},\,\,abc \le {\left( {\frac{{a + b + c}}{3}} \right)^3}\)
2. Các ví dụ minh họa
Loại 1: Vận dụng trực tiếp bất đẳng thức côsi
Ví dụ 1:
Cho \(a,b\) là số dương thỏa mãn \({a^2} + {b^2} = 2\). Chứng minh rằng
a) \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge 4\)
b) \({\left( {a + b} \right)^5} \ge 16ab\sqrt {\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)} \)
Hướng dẫn:
a) Áp dụng BĐT côsi ta có
\(\frac{a}{b} + \frac{b}{a} \ge 2\sqrt {\frac{a}{b}.\frac{b}{a}} = 2,\,\,\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}} \ge 2\sqrt {\frac{a}{{{b^2}}}.\frac{b}{{{a^2}}}} = \frac{2}{{\sqrt {ab} }}\)
Suy ra \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge \frac{4}{{\sqrt {ab} }}\) (1)
Mặt khác ta có \(2 = {a^2} + {b^2} \ge 2\sqrt {{a^2}{b^2}} = 2ab \Rightarrow ab \le 1\) (1)
Từ (1) và (2) suy ra \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge 4\) ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = 1\).
b) Ta có \({\left( {a + b} \right)^5} = \left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3a{b^2} + 3{a^2}b + {b^3}} \right)\)
Áp dụng BĐT côsi ta có
\({a^2} + 2ab + {b^2} \ge 2\sqrt {2ab\left( {{a^2} + {b^2}} \right)} = 4\sqrt {ab} \) và \(\left( {{a^3} + 3a{b^2}} \right) + \left( {3{a^2}b + {b^3}} \right) \ge 2\sqrt {\left( {{a^3} + 3a{b^2}} \right)\left( {3{a^2}b + {b^3}} \right)} = 4\sqrt {ab\left( {1 + {b^2}} \right)\left( {{a^2} + 1} \right)} \)
Suy ra \(\left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3a{b^2} + 3{a^2}b + {b^3}} \right) \ge 16ab\sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} \)
Do đó \({\left( {a + b} \right)^5} \ge 16ab\sqrt {\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)} \) ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = 1\).
Ví dụ 2:
Cho \(a,b,c\) là số dương. Chứng minh rằng
a) \(\left( {a + \frac{1}{b}} \right)\left( {b + \frac{1}{c}} \right)\left( {c + \frac{1}{a}} \right) \ge 8\)
b) \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 6abc\)
c) \((1 + a)(1 + b)(1 + c) \ge {\left( {1 + \sqrt[3]{{abc}}} \right)^3}\)
d) \({a^2}\sqrt {bc} + {b^2}\sqrt {ac} + {c^2}\sqrt {ab} \le {a^3} + {b^3} + {c^3}\)
Hướng dẫn:
a) Áp dụng BĐT côsi ta có
\(a + \frac{1}{b} \ge 2\sqrt {\frac{a}{b}} ,\,\,b + \frac{1}{c} \ge 2\sqrt {\frac{b}{c}} ,\,\,c + \frac{1}{a} \ge 2\sqrt {\frac{c}{a}} \)
Suy ra \(\left( {a + \frac{1}{b}} \right)\left( {b + \frac{1}{c}} \right)\left( {c + \frac{1}{a}} \right) \ge 8\sqrt {\frac{a}{b}} .\sqrt {\frac{b}{c}} .\sqrt {\frac{c}{a}} = 8\) ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).
b) Áp dụng BĐT côsi cho hai số dương ta có
\(1 + {a^2} \ge 2\sqrt {{a^2}} = 2a\), tương tự ta có \(1 + {b^2} \ge 2b,\,\,1 + {c^2} \ge 2c\)
Suy ra \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 2\left( {{a^2}b + {b^2}c + {c^2}a} \right)\)
Mặt khác, áp dụng BĐT côsi cho ba số dương ta có
\({a^2}b + {b^2}c + {c^2}a \ge 3\sqrt {{a^2}b.{b^2}c.{c^2}a} = 3abc\)
Suy ra \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 6abc\). ĐPCM.
Đẳng thức xảy ra khi và chỉ khi \(a = b = c = 1\).
c) Ta có \((1 + a)(1 + b)(1 + c) = 1 + \left( {ab + bc + ca} \right) + \left( {a + b + c} \right) + abc\)
Áp dụng BĐT côsi cho ba số dương ta có
\(ab + bc + ca \ge 3\sqrt[3]{{ab.bc.ca}} = 3{\left( {\sqrt[3]{{abc}}} \right)^2}\) và \(a + b + c \ge 3\sqrt[3]{{abc}}\)
Suy ra \((1 + a)(1 + b)(1 + c) \ge 1 + 3{\left( {\sqrt[3]{{abc}}} \right)^2} + 3\sqrt[3]{{abc}} + abc = {\left( {1 + \sqrt[3]{{abc}}} \right)^3}\) ĐPCM
Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).
d) Áp dụng BĐT côsi cho hai số dương ta có
\({a^2}\sqrt {bc} \le {a^2}\left( {\frac{{b + c}}{2}} \right),\,\,\,{b^2}\sqrt {ac} \le {b^2}\left( {\frac{{a + c}}{2}} \right),\,\,{c^2}\sqrt {ab} \le {c^2}\left( {\frac{{a + b}}{2}} \right)\)
Suy ra \({a^2}\sqrt {bc} + {b^2}\sqrt {ac} + {c^2}\sqrt {ab} \le \frac{{{a^2}b + {b^2}a + {a^2}c + {c^2}a + {b^2}c + {c^2}b}}{2}\) (1)
Mặt khác theo BĐT côsi cho ba số dương ta có
\({a^2}b \le \frac{{{a^3} + {a^3} + {b^3}}}{3},\,\,{b^2}a \le \frac{{{b^3} + {b^3} + {a^3}}}{3},\,\,{a^2}c \le \frac{{{a^3} + {a^3} + {c^3}}}{3},\)
\({c^2}a \le \frac{{{c^3} + {c^3} + {a^3}}}{3},\,\,{b^2}c \le \frac{{{b^3} + {b^3} + {c^3}}}{3},\,\,{c^2}b \le \frac{{{c^3} + {c^3} + {b^3}}}{3}\)
Suy ra \({a^2}b + {b^2}a + {a^2}c + {c^2}a + {b^2}c + {c^2}b \le 2\left( {{a^3} + {b^3} + {c^3}} \right)\) (2)
Từ (1) và (2) suy ra \({a^2}\sqrt {bc} + {b^2}\sqrt {ac} + {c^2}\sqrt {ab} \le {a^3} + {b^3} + {c^3}\)
Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).
Loại 2: Kĩ thuật tách, thêm bớt, ghép cặp
- Để chứng minh BĐT ta thường phải biến đổi (nhân chia, thêm, bớt một biểu thức) để tạo biểu thức có thể giản ước được sau khi áp dụng BĐT côsi.
- Khi gặp BĐT có dạng \(x + y + z \ge a + b + c\)(hoặc \(xyz \ge abc\)), ta thường đi chứng minh \(x + y \ge 2a\)(hoặc\(ab \le {x^2}\)), xây dựng các BĐT tương tự rồi cộng(hoặc nhân) vế với vế ta suy ra điều phải chứng minh.
- Khi tách và áp dụng BĐT côsi ta dựa vào việc đảm bảo dấu bằng xảy ra(thường dấu bằng xảy ra khi các biến bằng nhau hoặc tại biên).
Ví dụ:
Cho \(a,b,c\) là số dương. Chứng minh rằng:
a) \(\frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b} \ge a + b + c\)
b) \(\frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)
Hướng dẫn:
a) Áp dụng BĐT côsi ta có \(\frac{{ab}}{c} + \frac{{bc}}{a} \ge 2\sqrt {\frac{{ab}}{c}.\frac{{bc}}{a}} = 2b\)
Tương tự ta có \(\frac{{bc}}{a} + \frac{{ac}}{b} \ge 2c,\,\,\frac{{ac}}{b} + \frac{{ba}}{c} \ge 2a\).
Cộng vế với vế các BĐT trên ta được
\(2\left( {\frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b}} \right) \ge 2\left( {a + b + c} \right) \Leftrightarrow \frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b} \ge a + b + c\) ĐPCM
Đẳng thức xảy ra khi \(a = b = c\) .
b) Áp dụng BĐT côsi ta có \(\frac{a}{{{b^2}}} + \frac{1}{a} \ge 2\sqrt {\frac{a}{{{b^2}}}.\frac{1}{a}} = \frac{2}{b}\)
Tương tự ta có \(\frac{b}{{{c^2}}} + \frac{1}{b} \ge \frac{2}{c},\,\,\frac{c}{{{a^2}}} + \frac{1}{c} \ge \frac{2}{a}\)
Cộng vế với vế các BĐT trên ta được
\(\frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{2}{a} + \frac{2}{b} + \frac{2}{c} \Leftrightarrow \frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) ĐPCM.
Đẳng thức xảy ra khi \(a = b = c\) .
Từ khóa » Các Bài Tập Về Bất đẳng Thức Cosi Lớp 10
-
Tuyển Tập 50 Bài Tập Về Bất đẳng Thức Có Lời Giải Chi Tiết Lớp 10
-
Bất đẳng Thức Lớp 10 - Phân Loại Bài Tập Và Cách Giải đáp án
-
Bất đẳng Thức Cosi
-
Bài Tập Bất đẳng Thức Lớp 10 Có đáp án
-
Bất đẳng Thức Cosi Và Các Dạng Bài Tập Có Lời Giải Chi Tiết Từ A - Z
-
Bất đẳng Thức Côsi (Cauchy) Và Bài Tập áp Dụng - Gia Sư Tiến Bộ
-
Phân Loại Và Phương Pháp Giải Bài Tập Bất đẳng Thức
-
Bất đẳng Thức - Toán Học Lớp 10 - Baitap123
-
Bài Tập Bất đẳng Thức Côsi Lớp 10 - Hàng Hiệu
-
Bài Tập Có đáp án Chi Tiết Về Kĩ Thuật Sử Dụng Bất đẳng Thức Cauchy Và
-
Bài Tập Có đáp án Chi Tiết Về Kĩ Thuật Sử Dụng Bất đẳng Thức Cauchy ...
-
Bất đẳng Thức Cosi – Công Thức, Bài Tập Cơ Bản Và Nâng Cao
-
[WORD] Bài Tập Bất đẳng Thức Lớp 10 Có File Word
-
Bài Tập Bất đẳng Thức Lớp 10 Có Lời Giải - 123doc