Toán 11 Bài 3: Nhị Thức Niu-tơn - Hoc247
Có thể bạn quan tâm
Nội dung bài học sẽ giới thiệu đến các em khái niệm Nhị thức Niu-tơn cùng các dạng bài tập liên quan. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng làm chủ nội dung bài học.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Nhị thức Newton
1.2. Nhận xét
1.3. Hệ quả
1.4. Bài toán
2. Bài tập minh hoạ
3. Luyện tập bài 3 chương 2 giải tích 11
3.1. Trắc nghiệm về Nhị thức Niu-tơn
3.2. Bài tập SGK & Nâng cao về Nhị thức Niu-tơn
4. Hỏi đáp về bài 2 chương 2 giải tích 11
Tóm tắt lý thuyết
1.1. Nhị thức Newton
- Định lí: \({(a + b)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \)
\( = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
1.2. Nhận xét
- Trong khai triển Newton \({(a + b)^n}\) có các tính chất sau
+ Gồm có \(n + 1\) số hạng
+ Số mũ của a giảm từ n đến 0 và số mũ của b tăng từ 0 đến n
+ Tổng các số mũ của a và b trong mỗi số hạng bằng n
+ Các hệ số có tính đối xứng: \(C_n^k = C_n^{n - k}\)
+ Số hạng tổng quát : \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\)
VD: Số hạng thứ nhất \({T_1} = {T_{0 + 1}} = C_n^0{a^n}\), số hạng thứ k: \({T_{(k - 1) + 1}} = C_n^{k - 1}{a^{n - k + 1}}{b^{k - 1}}\)
1.3. Hệ quả
- Ta có : \({(1 + x)^n} = C_n^0 + xC_n^1 + {x^2}C_n^2 + ... + {x^n}C_n^n\)
- Từ khai triển này ta có các kết quả sau:
+ \(C_n^0 + C_n^1 + ... + C_n^n = {2^n}\)
+ \(C_n^0 - C_n^1 + C_n^2 - ... + {( - 1)^n}C_n^n = 0\)
1.4. Bài toán
- Xác định hệ số của số hạng chứa \({x^m}\) trong khai triển:
\({\left( {a{x^p} + b{x^q}} \right)^n}\) với \(x > 0\) (\(p,q\) là các hằng số khác nhau).
Phương pháp giải:
- Ta có:
\({\left( {a{x^p} + b{x^q}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left( {a{x^p}} \right)}^{n - k}}{{\left( {b{x^q}} \right)}^k}} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}{x^{np - pk + qk}}} \)
- Số hạng chứa \({x^m}\) ứng với giá trị \(k\) thỏa: \(np - pk + qk = m\).
- Từ đó tìm \(k = \frac{{m - np}}{{p - q}}\)
- Vậy hệ số của số hạng chứa \({x^m}\) là: \(C_n^k{a^{n - k}}.{b^k}\) với giá trị \(k\) đã tìm được ở trên.
- Nếu \(k\) không nguyên hoặc \(k > n\) thì trong khai triển không chứa \({x^m}\), hệ số phải tìm bằng 0.
- Chú ý: Xác định hệ số của số hạng chứa \({x^m}\) trong khai triển
\(P\left( x \right) = {\left( {a + b{x^p} + c{x^q}} \right)^n}\) được viết dưới dạng \({a_0} + {a_1}x + ... + {a_{2n}}{x^{2n}}\).
- Ta làm như sau:
+ Viết \(P\left( x \right) = {\left( {a + b{x^p} + c{x^q}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{{\left( {b{x^p} + c{x^q}} \right)}^k}} \);
+ Viết số hạng tổng quát khi khai triển các số hạng dạng \({\left( {b{x^p} + c{x^q}} \right)^k}\) thành một đa thức theo luỹ thừa của x.
+ Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của \({x^m}\).
- Để xác định hệ số lớn nhất trong khai triển nhị thức Niutơn
- Ta làm như sau:
+ Tính hệ số \({a_k}\) theo \(k\) và \(n\);
+ Giải bất phương trình \({a_{k - 1}} \le {a_k}\) với ẩn số \(k\);
+ Hệ số lớn nhất phải tìm ứng với số tự nhiên k lớn nhất thoả mãn bất phương trình trên.
Bài tập minh họa
Ví dụ 1:
Tìm hệ số x16 trong khai triền ( x2-2x )10.
Hướng dẫn giải:
Ta có: \({\left( {{x^2} - 2x} \right)^{10}} = \,{\sum\limits_{k = 0}^{10} {C_{10}^k{x^2})} ^{10 - k}}{\left. { - 2x} \right)^k}\)
\(= \,\sum\limits_{k = 0}^{10} {C_{10}^k{x^{20 - 2k}}{x^k}} {\left. { - 2} \right)^k} = \,\sum\limits_{k = 0}^{10} {C_{10}^k{x^{20 - k}}} {\left. { - 2} \right)^k}\)
Ta chọn: 20 - k= 16 \(\Leftrightarrow \,k = 4\)
=> Hệ số x16 trong khai triển là \(C_{10}^4 = 3360\)
Ví dụ 2:
Biết hệ số của x2 trong khai triển của (1-3x)n là 90. Tìm n.
Hướng dẫn giải:
Với số thực \(x \ne 0\) và với mọi số tự nhiên \(n \ge 1\), ta có:
\({(1 - 3x)^n} = \,{[1 - (3x)]^n} = \,\sum\limits_{k = 0}^n {C_n^k} {(1)^{n - k}}{( - 3)^k}{x^k}\)
Suy ra hệ số của x2 trong khai triển này là \({3^2}C_n^2\). Theo giả thiết, ta có:
\({3^2}C_n^2\) = 90 => \(C_n^2\, = 10\)
Từ đó ta có: \(\frac{{n!}}{{2!(n - 2)!}} = 10\, \Leftrightarrow \,n(n - 1)\, = \,20\)
\(\Leftrightarrow \,{n^2}\, - \,n = \,20\, \Leftrightarrow \,n = \, - 4\) ( loại) hoặc n= 5
Đáp số: n= 5
Ví dụ 3:
Tìm số hạng không chứa x trong các khai triển \(f(x) = {\left( {x - \frac{2}{x}} \right)^{12}}{\rm{ (}}x \ne 0).\)
Hướng dẫn giải:
Ta có: \(f(x) = {(x - 2.{x^{ - 1}})^{12}} = \sum\limits_{k = 0}^{12} {C_{12}^k{x^{12 - k}}.{{( - 2{x^{ - 1}})}^k}} \)
\(\sum\limits_{k = 0}^{12} {C_{12}^k{{( - 2)}^k}{x^{12 - 2k}}} \)
Số hạng không chứa \(x\) ứng với giá trị \(k\) thỏa mãn: \(12 - 2k = 0\)
\( \Leftrightarrow k = 6 \Rightarrow \) số hạng không chứa \(x\) là: \(C_{12}^6{.2^6} = 59136\).
Ví dụ 4:
Xác định hệ số của \({x^4}\) trong khai triển sau: \(f(x) = {(3{x^2} + 2x + 1)^{10}}\).
Hướng dẫn giải:
\(f\left( x \right) = {\left( {1 + 2x + 3{x^2}} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left( {2x + 3{x^2}} \right)^k}\)
\( = \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {(2x)^{k - i}}.{(3{x^2})^i} = \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {2^{k - i}}{.3^i}{x^{k + i}}\)
với\(0 \le i \le k \le 10\).
Do đó \(k + i = 4\) với các trường hợp \(i = 0,k = 4\) hoặc \(i = 1,k = 3\) hoặc \(i = k = 2\).
Vậy hệ số chứa \({x^4}\): \({2^4}C_{10}^4.C_4^0 + {2^2}{3^1}C_{10}^3.C_3^1 + {3^2}C_{10}^2.C_2^2 = 8085\).
3. Luyện tập Bài 3 chương 2 giải tích 11
Nội dung bài học sẽ giới thiệu đến các em khái niệm Nhị thức Niu-tơn cùng các dạng bài tập liên quan. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng làm chủ nội dung bài học.
3.1 Trắc nghiệm về Nhị thức Niu-tơn
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 2 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Tìm hệ số của \({x^7}\) trong khai triển biểu thức \(f(x) = {(1 - 2x)^{10}}\)
- A. \(15360\)
- B. \( - 15360\)
- C. \( - 15363\)
- D. \(15363\)
-
Câu 2:
Tìm số hạng không chứa x trong các khai triển \(g(x) = {\left( {\frac{1}{{\sqrt[3]{{{x^2}}}}} + \sqrt[4]{{{x^3}}}} \right)^{17}}{\rm{ }}(x > 0)\)
- A. 213012
- B. 12373
- C. 24310
- D. 139412
-
Câu 3:
Viết số hạng thứ \(k + 1\) trong khai triển \(f(x) = {\left( {2x + \frac{1}{x}} \right)^{20}}.\)
- A. \({T_{k + 1}} = C_{20}^k{.2^{20 - k}}.{x^{20 - k}}\)
- B. \({T_{k + 1}} = C_{10}^k{.2^{20 - k}}.{x^{20 - 2k}}\)
- C. \({T_{k + 1}} = C_{20}^k{.2^{20 - 4k}}.{x^{20 - 2k}}\)
- D. \({T_{k + 1}} = C_{20}^k{.2^{20 - k}}.{x^{20 - 2k}}\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về Nhị thức Niu-tơn
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 2 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 1 trang 57 SGK Đại số & Giải tích 11
Bài tập 2 trang 58 SGK Đại số & Giải tích 11
Bài tập 3 trang 58 SGK Đại số & Giải tích 11
Bài tập 4 trang 58 SGK Đại số & Giải tích 11
Bài tập 5 trang 58 SGK Đại số & Giải tích 11
Bài tập 6 trang 58 SGK Đại số & Giải tích 11
Bài tập 2.32 trang 79 SBT Toán 11
Bài tập 2.33 trang 79 SBT Toán 11
Bài tập 2.34 trang 79 SBT Toán 11
Bài tập 2.35 trang 79 SBT Toán 11
Bài tập 2.36 trang 79 SBT Toán 11
Bài tập 2.37 trang 79 SBT Toán 11
Bài tập 2.38 trang 79 SBT Toán 11
Bài tập 2.39 trang 79 SBT Toán 11
Bài tập 17 trang 67 SGK Toán 11 NC
Bài tập 18 trang 67 SGK Toán 11 NC
Bài tập 19 trang 67 SGK Toán 11 NC
Bài tập 20 trang 67 SGK Toán 11 NC
Bài tập 21 trang 67 SGK Toán 11 NC
Bài tập 22 trang 67 SGK Toán 11 NC
Bài tập 23 trang 67 SGK Toán 11 NC
Bài tập 24 trang 67 SGK Toán 11 NC
4. Hỏi đáp về bài 3 chương 2 giải tích 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONEBài học cùng chương
Toán 11 Bài 1: Quy tắc đếm Toán 11 Bài 2: Hoán vị - Chỉnh hợp - Tổ hợp Toán 11 Bài 4: Phép thử và biến cố Toán 11 Bài 5: Xác suất của biến cố Toán 11 Ôn tập chương 2 Tổ hợp - Xác suất ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORKXEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK1 lớp 11
Đề thi giữa HK1 lớp 11
Đề thi HK2 lớp 12
Đề thi giữa HK2 lớp 11
Tôi yêu em - Pu-Skin
Video bồi dưỡng HSG môn Toán
Đề cương HK1 lớp 11
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Chí Phèo
Cấp số nhân
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
Cấp số cộng
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Hệ Thức Newton Lớp 11
-
Lý Thuyết Nhị Thức Niu - Tơn | SGK Toán Lớp 11
-
Nhị Thức Newton: Công Thức Và Một Số Bài Toán - Toán Thầy Định
-
Công Thức Nhị Thức Newton đầy đủ
-
Các Dạng Toán Về Nhị Thức Newton( Có Lời Giải Chi Tiết)
-
Nhị Thức Niu-tơn – Môn Toán Lớp 11 – Thầy Giáo: Nguyễn Công Chính
-
Nắm Trọn Bộ Công Thức Nhị Thức Newton Lớp 11 Và Bài Tập Liên Quan
-
Giải Toán 11 Bài 3: Nhị Thức Niu-tơn
-
Cách Khai Triển Nhị Thức Newton: Tìm Hệ Số, Số Hạng ...
-
Nhị Thức Newton, Trắc Nghiệm Toán Học Lớp 11 - Baitap123
-
Lý Thuyết Nhị Thức Niu - Tơn - Môn Toán - Tìm đáp án, Giải Bài Tập, để
-
Nhị Thức Newton - Bài Tập & Lời Giải Toán Lớp 11 - Itoan
-
Ôn Tập Môn Toán Lớp 11 - Vấn đề 3: Nhị Thức Newton
-
Lý Thuyết Nhị Thức Newton Và Tam Giác Pascal - Tổ Hợp Và Xác Xuất
-
Khai Triển Nhị Thức Newton