Toán 11 Bài 3: Nhị Thức Niu-tơn - Hoc247

YOMEDIA NONE Trang chủ Toán 11 Chương 2: Tổ Hợp - Xác Suất Toán 11 Bài 3: Nhị thức Niu-tơn ADMICRO Lý thuyết10 Trắc nghiệm22 BT SGK 196 FAQ

Nội dung bài học sẽ giới thiệu đến các em khái niệm Nhị thức Niu-tơn cùng các dạng bài tập liên quan. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng làm chủ nội dung bài học.

ATNETWORK YOMEDIA

1. Tóm tắt lý thuyết

1.1. Nhị thức Newton

1.2. Nhận xét

1.3. Hệ quả

1.4. Bài toán

2. Bài tập minh hoạ

3. Luyện tập bài 3 chương 2 giải tích 11

3.1. Trắc nghiệm về Nhị thức Niu-tơn

3.2. Bài tập SGK & Nâng cao về Nhị thức Niu-tơn

4. Hỏi đáp về bài 2 chương 2 giải tích 11

Tóm tắt lý thuyết

1.1. Nhị thức Newton

- Định lí: \({(a + b)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \)

\( = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

1.2. Nhận xét

- Trong khai triển Newton \({(a + b)^n}\) có các tính chất sau

+ Gồm có \(n + 1\) số hạng

+ Số mũ của a giảm từ n đến 0 và số mũ của b tăng từ 0 đến n

+ Tổng các số mũ của a và b trong mỗi số hạng bằng n

+ Các hệ số có tính đối xứng: \(C_n^k = C_n^{n - k}\)

+ Số hạng tổng quát : \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\)

VD: Số hạng thứ nhất \({T_1} = {T_{0 + 1}} = C_n^0{a^n}\), số hạng thứ k: \({T_{(k - 1) + 1}} = C_n^{k - 1}{a^{n - k + 1}}{b^{k - 1}}\)

1.3. Hệ quả

- Ta có : \({(1 + x)^n} = C_n^0 + xC_n^1 + {x^2}C_n^2 + ... + {x^n}C_n^n\)

- Từ khai triển này ta có các kết quả sau:

+ \(C_n^0 + C_n^1 + ... + C_n^n = {2^n}\)

+ \(C_n^0 - C_n^1 + C_n^2 - ... + {( - 1)^n}C_n^n = 0\)

1.4. Bài toán

- Xác định hệ số của số hạng chứa \({x^m}\) trong khai triển:

\({\left( {a{x^p} + b{x^q}} \right)^n}\) với \(x > 0\) (\(p,q\) là các hằng số khác nhau).

Phương pháp giải:

- Ta có:

\({\left( {a{x^p} + b{x^q}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left( {a{x^p}} \right)}^{n - k}}{{\left( {b{x^q}} \right)}^k}} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}{x^{np - pk + qk}}} \)

- Số hạng chứa \({x^m}\) ứng với giá trị \(k\) thỏa: \(np - pk + qk = m\).

- Từ đó tìm \(k = \frac{{m - np}}{{p - q}}\)

- Vậy hệ số của số hạng chứa \({x^m}\) là: \(C_n^k{a^{n - k}}.{b^k}\) với giá trị \(k\) đã tìm được ở trên.

- Nếu \(k\) không nguyên hoặc \(k > n\) thì trong khai triển không chứa \({x^m}\), hệ số phải tìm bằng 0.

- Chú ý: Xác định hệ số của số hạng chứa \({x^m}\) trong khai triển

\(P\left( x \right) = {\left( {a + b{x^p} + c{x^q}} \right)^n}\) được viết dưới dạng \({a_0} + {a_1}x + ... + {a_{2n}}{x^{2n}}\).

- Ta làm như sau:

+ Viết \(P\left( x \right) = {\left( {a + b{x^p} + c{x^q}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{{\left( {b{x^p} + c{x^q}} \right)}^k}} \);

+ Viết số hạng tổng quát khi khai triển các số hạng dạng \({\left( {b{x^p} + c{x^q}} \right)^k}\) thành một đa thức theo luỹ thừa của x.

+ Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của \({x^m}\).

- Để xác định hệ số lớn nhất trong khai triển nhị thức Niutơn

- Ta làm như sau:

+ Tính hệ số \({a_k}\) theo \(k\) và \(n\);

+ Giải bất phương trình \({a_{k - 1}} \le {a_k}\) với ẩn số \(k\);

+ Hệ số lớn nhất phải tìm ứng với số tự nhiên k lớn nhất thoả mãn bất phương trình trên.

Bài tập minh họa

Ví dụ 1:

Tìm hệ số x16 trong khai triền ( x2-2x )10.

Hướng dẫn giải:

Ta có: \({\left( {{x^2} - 2x} \right)^{10}} = \,{\sum\limits_{k = 0}^{10} {C_{10}^k{x^2})} ^{10 - k}}{\left. { - 2x} \right)^k}\)

\(= \,\sum\limits_{k = 0}^{10} {C_{10}^k{x^{20 - 2k}}{x^k}} {\left. { - 2} \right)^k} = \,\sum\limits_{k = 0}^{10} {C_{10}^k{x^{20 - k}}} {\left. { - 2} \right)^k}\)

Ta chọn: 20 - k= 16 \(\Leftrightarrow \,k = 4\)

=> Hệ số x16 trong khai triển là \(C_{10}^4 = 3360\)

Ví dụ 2:

Biết hệ số của x2 trong khai triển của (1-3x)n là 90. Tìm n.

Hướng dẫn giải:

Với số thực \(x \ne 0\) và với mọi số tự nhiên \(n \ge 1\), ta có:

\({(1 - 3x)^n} = \,{[1 - (3x)]^n} = \,\sum\limits_{k = 0}^n {C_n^k} {(1)^{n - k}}{( - 3)^k}{x^k}\)

Suy ra hệ số của x2 trong khai triển này là \({3^2}C_n^2\). Theo giả thiết, ta có:

\({3^2}C_n^2\) = 90 => \(C_n^2\, = 10\)

Từ đó ta có: \(\frac{{n!}}{{2!(n - 2)!}} = 10\, \Leftrightarrow \,n(n - 1)\, = \,20\)

\(\Leftrightarrow \,{n^2}\, - \,n = \,20\, \Leftrightarrow \,n = \, - 4\) ( loại) hoặc n= 5

Đáp số: n= 5

Ví dụ 3:

Tìm số hạng không chứa x trong các khai triển \(f(x) = {\left( {x - \frac{2}{x}} \right)^{12}}{\rm{ (}}x \ne 0).\)

Hướng dẫn giải:

Ta có: \(f(x) = {(x - 2.{x^{ - 1}})^{12}} = \sum\limits_{k = 0}^{12} {C_{12}^k{x^{12 - k}}.{{( - 2{x^{ - 1}})}^k}} \)

\(\sum\limits_{k = 0}^{12} {C_{12}^k{{( - 2)}^k}{x^{12 - 2k}}} \)

Số hạng không chứa \(x\) ứng với giá trị \(k\) thỏa mãn: \(12 - 2k = 0\)

\( \Leftrightarrow k = 6 \Rightarrow \) số hạng không chứa \(x\) là: \(C_{12}^6{.2^6} = 59136\).

Ví dụ 4:

Xác định hệ số của \({x^4}\) trong khai triển sau: \(f(x) = {(3{x^2} + 2x + 1)^{10}}\).

Hướng dẫn giải:

\(f\left( x \right) = {\left( {1 + 2x + 3{x^2}} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left( {2x + 3{x^2}} \right)^k}\)

\( = \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {(2x)^{k - i}}.{(3{x^2})^i} = \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {2^{k - i}}{.3^i}{x^{k + i}}\)

với\(0 \le i \le k \le 10\).

Do đó \(k + i = 4\) với các trường hợp \(i = 0,k = 4\) hoặc \(i = 1,k = 3\) hoặc \(i = k = 2\).

Vậy hệ số chứa \({x^4}\): \({2^4}C_{10}^4.C_4^0 + {2^2}{3^1}C_{10}^3.C_3^1 + {3^2}C_{10}^2.C_2^2 = 8085\).

3. Luyện tập Bài 3 chương 2 giải tích 11

Nội dung bài học sẽ giới thiệu đến các em khái niệm Nhị thức Niu-tơn cùng các dạng bài tập liên quan. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng làm chủ nội dung bài học.

3.1 Trắc nghiệm về Nhị thức Niu-tơn

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 2 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Tìm hệ số của \({x^7}\) trong khai triển biểu thức \(f(x) = {(1 - 2x)^{10}}\)

    • A. \(15360\)
    • B. \( - 15360\)
    • C. \( - 15363\)
    • D. \(15363\)
  • Câu 2:

    Tìm số hạng không chứa x trong các khai triển \(g(x) = {\left( {\frac{1}{{\sqrt[3]{{{x^2}}}}} + \sqrt[4]{{{x^3}}}} \right)^{17}}{\rm{ }}(x > 0)\)

    • A. 213012
    • B. 12373
    • C. 24310
    • D. 139412
  • Câu 3:

    Viết số hạng thứ \(k + 1\) trong khai triển \(f(x) = {\left( {2x + \frac{1}{x}} \right)^{20}}.\)

    • A. \({T_{k + 1}} = C_{20}^k{.2^{20 - k}}.{x^{20 - k}}\)
    • B. \({T_{k + 1}} = C_{10}^k{.2^{20 - k}}.{x^{20 - 2k}}\)
    • C. \({T_{k + 1}} = C_{20}^k{.2^{20 - 4k}}.{x^{20 - 2k}}\)
    • D. \({T_{k + 1}} = C_{20}^k{.2^{20 - k}}.{x^{20 - 2k}}\)

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK và Nâng Cao về Nhị thức Niu-tơn

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 2 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.

Bài tập 1 trang 57 SGK Đại số & Giải tích 11

Bài tập 2 trang 58 SGK Đại số & Giải tích 11

Bài tập 3 trang 58 SGK Đại số & Giải tích 11

Bài tập 4 trang 58 SGK Đại số & Giải tích 11

Bài tập 5 trang 58 SGK Đại số & Giải tích 11

Bài tập 6 trang 58 SGK Đại số & Giải tích 11

Bài tập 2.32 trang 79 SBT Toán 11

Bài tập 2.33 trang 79 SBT Toán 11

Bài tập 2.34 trang 79 SBT Toán 11

Bài tập 2.35 trang 79 SBT Toán 11

Bài tập 2.36 trang 79 SBT Toán 11

Bài tập 2.37 trang 79 SBT Toán 11

Bài tập 2.38 trang 79 SBT Toán 11

Bài tập 2.39 trang 79 SBT Toán 11

Bài tập 17 trang 67 SGK Toán 11 NC

Bài tập 18 trang 67 SGK Toán 11 NC

Bài tập 19 trang 67 SGK Toán 11 NC

Bài tập 20 trang 67 SGK Toán 11 NC

Bài tập 21 trang 67 SGK Toán 11 NC

Bài tập 22 trang 67 SGK Toán 11 NC

Bài tập 23 trang 67 SGK Toán 11 NC

Bài tập 24 trang 67 SGK Toán 11 NC

4. Hỏi đáp về bài 3 chương 2 giải tích 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 11 HỌC247

NONE

Bài học cùng chương

Bài 1: Quy tắc đếm Toán 11 Bài 1: Quy tắc đếm Bài 2: Hoán vị - Chỉnh hợp - Tổ hợp Toán 11 Bài 2: Hoán vị - Chỉnh hợp - Tổ hợp Bài 4: Phép thử và biến cố Toán 11 Bài 4: Phép thử và biến cố Bài 5: Xác suất của biến cố Toán 11 Bài 5: Xác suất của biến cố Ôn tập chương 2 Tổ hợp - Xác suất Toán 11 Ôn tập chương 2 Tổ hợp - Xác suất ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 11

Toán 11

Toán 11 Kết Nối Tri Thức

Toán 11 Chân Trời Sáng Tạo

Toán 11 Cánh Diều

Giải bài tập Toán 11 KNTT

Giải bài tập Toán 11 CTST

Trắc nghiệm Toán 11

Ngữ văn 11

Ngữ Văn 11 Kết Nối Tri Thức

Ngữ Văn 11 Chân Trời Sáng Tạo

Ngữ Văn 11 Cánh Diều

Soạn Văn 11 Kết Nối Tri Thức

Soạn Văn 11 Chân Trời Sáng Tạo

Văn mẫu 11

Tiếng Anh 11

Tiếng Anh 11 Kết Nối Tri Thức

Tiếng Anh 11 Chân Trời Sáng Tạo

Tiếng Anh 11 Cánh Diều

Trắc nghiệm Tiếng Anh 11 KNTT

Trắc nghiệm Tiếng Anh 11 CTST

Tài liệu Tiếng Anh 11

Vật lý 11

Vật lý 11 Kết Nối Tri Thức

Vật Lý 11 Chân Trời Sáng Tạo

Vật lý 11 Cánh Diều

Giải bài tập Vật Lý 11 KNTT

Giải bài tập Vật Lý 11 CTST

Trắc nghiệm Vật Lý 11

Hoá học 11

Hoá học 11 Kết Nối Tri Thức

Hoá học 11 Chân Trời Sáng Tạo

Hoá Học 11 Cánh Diều

Giải bài tập Hoá 11 KNTT

Giải bài tập Hoá 11 CTST

Trắc nghiệm Hoá học 11

Sinh học 11

Sinh học 11 Kết Nối Tri Thức

Sinh Học 11 Chân Trời Sáng Tạo

Sinh Học 11 Cánh Diều

Giải bài tập Sinh học 11 KNTT

Giải bài tập Sinh học 11 CTST

Trắc nghiệm Sinh học 11

Lịch sử 11

Lịch Sử 11 Kết Nối Tri Thức

Lịch Sử 11 Chân Trời Sáng Tạo

Giải bài tập Sử 11 KNTT

Giải bài tập Sử 11 CTST

Trắc nghiệm Lịch Sử 11

Địa lý 11

Địa Lý 11 Kết Nối Tri Thức

Địa Lý 11 Chân Trời Sáng Tạo

Giải bài tập Địa 11 KNTT

Giải bài tập Địa 11 CTST

Trắc nghiệm Địa lý 11

GDKT & PL 11

GDKT & PL 11 Kết Nối Tri Thức

GDKT & PL 11 Chân Trời Sáng Tạo

Giải bài tập KTPL 11 KNTT

Giải bài tập KTPL 11 CTST

Trắc nghiệm GDKT & PL 11

Công nghệ 11

Công nghệ 11 Kết Nối Tri Thức

Công nghệ 11 Cánh Diều

Giải bài tập Công nghệ 11 KNTT

Giải bài tập Công nghệ 11 Cánh Diều

Trắc nghiệm Công nghệ 11

Tin học 11

Tin học 11 Kết Nối Tri Thức

Tin học 11 Cánh Diều

Giải bài tập Tin học 11 KNTT

Giải bài tập Tin học 11 Cánh Diều

Trắc nghiệm Tin học 11

Cộng đồng

Hỏi đáp lớp 11

Tư liệu lớp 11

Xem nhiều nhất tuần

Đề thi HK1 lớp 11

Đề thi giữa HK1 lớp 11

Đề thi HK2 lớp 12

Đề thi giữa HK2 lớp 11

Tôi yêu em - Pu-Skin

Video bồi dưỡng HSG môn Toán

Đề cương HK1 lớp 11

Công nghệ 11 Bài 16: Công nghệ chế tạo phôi

Chí Phèo

Cấp số nhân

Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ

Cấp số cộng

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Hệ Thức Newton Lớp 11