Toán Tử Trường Vector | Anonymous

Điều hướng bài viết Khó hầy !!! ;'( MultiDictionary @ Mac OS X

1. Toán tử overrightarrow{grad}   : – Toán tử grad chuyển một trường vô hướng thành một trường vector. Đây là một vector với hướng biểu diễn hướng thay đổi nhanh nhất của trường với độ lớn tương ứng overrightarrow{grad}(U)=frac{partial U}{partial x}overrightarrow{{{e}_{x}}}+frac{partial U}{partial y}overrightarrow{{{e}_{y}}}+frac{partial U}{partial z}overrightarrow{{{e}_{z}}} 2. Toán tử Laplace Delta  : – Mô tả gia tốc của trường vô hướng và hữu hướng Delta U=frac{{{partial }^{2}}U}{partial {{x}^{2}}}+frac{{{partial }^{2}}U}{partial {{y}^{2}}}+frac{{{partial }^{2}}U}{partial {{z}^{2}}} Delta overrightarrow{A}left{ begin{matrix}   Delta {{A}_{x}}=frac{{{partial }^{2}}{{A}_{x}}}{partial {{x}^{2}}}+frac{{{partial }^{2}}{{A}_{x}}}{partial {{y}^{2}}}+frac{{{partial }^{2}}{{A}_{x}}}{partial {{z}^{2}}}      Delta {{A}_{y}}=frac{{{partial }^{2}}{{A}_{y}}}{partial {{x}^{2}}}+frac{{{partial }^{2}}{{A}_{y}}}{partial {{y}^{2}}}+frac{{{partial }^{2}}{{A}_{y}}}{partial {{z}^{2}}}      Delta {{A}_{z}}=frac{{{partial }^{2}}{{A}_{z}}}{partial {{x}^{2}}}+frac{{{partial }^{2}}{{A}_{z}}}{partial {{y}^{2}}}+frac{{{partial }^{2}}{{A}_{z}}}{partial {{z}^{2}}}   end{matrix} right}

3. Toán tử div : – Trong giải tích vectơ, toán tử div hay toán tử phân kỳ hay suất tiêu tán là một toán tử đo mức độ phát (ra) hay thu (vào) của trường vectơ tại một điểm cho trước. Một cách chính xác hơn, suất tiêu tán tượng trưng cho mật độ thể tích của một thông lượng đi ra khỏi trường vectơ từ một thể tích rất nhỏ xung quanh một điểm cho trước. div(overrightarrow{A})=frac{partial {{A}_{x}}}{partial x}+frac{partial {{A}_{y}}}{partial y}+frac{partial {{A}_{z}}}{partial z} 4. Toán tử overrightarrow{rot} : – Trong giải tích vectơ, toán tử rot là một toán tử vectơ mô tả độ xoáy của một trường vectơ. Tại bất kì điểm nào trên trường vectơ, rot được biểu thị bằng một vectơ. Các thuộc tính của vectơ này (độ dài và hướng) nói lên bản chất của độ xoáy tại điểm đó. – Hướng của rot là trục xoay, định bởi luật bàn tay phải, và độ lớn của rot là độ lớn của mức độ xoáy. Nếu trường vectơ tượng trưng cho vận tốc chảy của một chất lỏng đang lưu chuyển, thì rot sẽ là mật độ xoáy của chất lỏng đó. Một trường vectơ với rot bằng zero được gọi là không xoáy. overrightarrow{rot}(overrightarrow{A})=(frac{partial {{A}_{z}}}{partial y}-frac{partial {{A}_{y}}}{partial z})overrightarrow{{{e}_{x}}}+(frac{partial {{A}_{x}}}{partial z}-frac{partial {{A}_{z}}}{partial x})overrightarrow{{{e}_{y}}}+(frac{partial {{A}_{y}}}{partial x}-frac{partial {{A}_{x}}}{partial y})overrightarrow{{{e}_{z}}}

Chia sẻ:

  • Nhấn vào chia sẻ trên Facebook (Mở trong cửa sổ mới)
  • Bấm để chia sẻ trên Twitter (Mở trong cửa sổ mới)
  • Bấm để chia sẻ lên LinkedIn (Mở trong cửa sổ mới)
Thích Đang tải...

Có liên quan

Điều hướng bài viết Khó hầy !!! ;'( MultiDictionary @ Mac OS X

Bình luận về bài viết này Hủy trả lời

Δ

Tìm Profile
  • Facebook
  • Linkedin
Chuyên mục
  • Giải trí (43)
    • Funny (2)
    • Images (1)
    • La vie (5)
    • Lắng & Cảm (1)
    • Nghệ thuật (2)
    • Poetry (20)
    • Vidéo (11)
    • Văn Học (3)
  • Học Tập (6)
    • Bài học (5)
    • Đồ án (1)
  • Kiến thức công nghệ (30)
    • dsPIC (5)
    • FPGA (2)
    • Linux (2)
    • Thủ Thuật (9)
    • Ubuntu (7)
    • Wordpress (7)
    • Điện tử (1)
  • Lập Trình (31)
    • Angular 2 (1)
    • C# (5)
    • C++ (12)
  • Linh tinh (8)
  • Ma vie (7)
  • Products (1)
  • Projects (26)
    • MacOSX (1)
    • TinyOS (25)
  • Travail (1)
Actuator angular2 Arch linux C# CCS Con trỏ Cplusplus English Java jQuery Kiến trúc hệ thống thông tin Latex linh tinh Lượm nhặt motor msp430 Objective C OpenCV Quảng cáo Safe C++ servo std library thủ thuật tigon Toán học truyện cười Tuổi thơ VHDL Windows wordpress Xilinx ISE Bài viết mới
  • Bắt đầu với angular 2
  • Adam học lập trình
  • Auto get link
  • Tối ưu hóa C
  • Install Boost library with Mingw
Thư viện
  • Tháng Ba 2017 (1)
  • Tháng Ba 2013 (1)
  • Tháng Bảy 2012 (2)
  • Tháng Sáu 2012 (8)
  • Tháng Năm 2012 (21)
  • Tháng Một 2012 (1)
  • Tháng Mười Một 2011 (6)
  • Tháng Mười 2011 (6)
  • Tháng Chín 2011 (7)
  • Tháng Tám 2011 (6)
  • Tháng Bảy 2011 (27)
  • Tháng Sáu 2011 (27)
  • Tháng Năm 2011 (37)
Tháng Mười Một 2011
H B T N S B C
123456
78910111213
14151617181920
21222324252627
282930
« Th10 Th1 » Meta
  • Đăng ký
  • Đăng nhập
  • RSS bài viết
  • RSS bình luận
  • WordPress.com
Trang này sử dụng cookie. Tìm hiểu cách kiểm soát ở trong: Chính Sách Cookie
  • Bình luận
  • Đăng lại
  • Theo dõi Đã theo dõi
    • Anonymous
    • Theo dõi ngay
    • Đã có tài khoản WordPress.com? Đăng nhập.
    • Anonymous
    • Tùy biến
    • Theo dõi Đã theo dõi
    • Đăng ký
    • Đăng nhập
    • URL rút gọn
    • Báo cáo nội dung
    • Xem toàn bộ bài viết
    • Quản lý theo dõi
    • Ẩn menu
%d Tạo trang giống vầy với WordPress.comHãy bắt đầu

Từ khóa » Toán Tử Div Rot Grad