Tổng Hợp Lý Thuyết Chương 2: Hàm Số Lũy Thừa, Hàm ...
Có thể bạn quan tâm
- Sổ tay toán lý hóa 12 chỉ từ 29k/cuốn
Tổng hợp lý thuyết Chương 2: Hàm số lũy thừa, Hàm số mũ, hàm số logarit
Dưới đây là phần tổng hợp kiến thức, công thức, lý thuyết Toán lớp 12 Chương 2: Hàm số lũy thừa, Hàm số mũ, hàm số logarit ngắn gọn, chi tiết. Hi vọng tài liệu Lý thuyết Toán lớp 12 theo chương này sẽ giúp bạn nắm vững kiến thức môn Toán lớp 12.
- Lý thuyết Lũy thừa
- Lý thuyết Hàm số lũy thừa
- Lý thuyết Lôgarit
- Lý thuyết Hàm số mũ. Hàm số lôgarit
- Lý thuyết Phương trình mũ và phương trình lôgarit
- Lý thuyết Bất phương trình mũ và lôgarit
- Lý thuyết tổng hợp chương Hàm số lũy thừa, Hàm số mũ, Hàm số logarit
Lý thuyết Lũy thừa
A. Tóm tắt lý thuyết
1. Định nghĩa lũy thừa và căn
• Cho số thực b và số nguyên dương n (n ≥ 2) . Số a được gọi là căn bậc n của số b nếu an = b .
• Chú ý: - Với n lẻ và b ∈ R : Có duy nhất một căn bậc n của b, kí hiệu là n√b .
- Với n chắn:
+) b < 0: Không tồn tại căn bậc n của b.
+) b = 0: Có một căn bậc n của b là số 0.
+) b > 0: Có hai căn bậc n của a là hai số đối nhau, căn có giá trị dương ký hiệu là n√b, căn có giá trị âm kí hiệu là -n√b.
Số mũ α | Cơ số a | Lũy thừa aα |
α = n ∈ N* | a ∈ R | aα = an = a.a. ... .a (n thừa số a) |
α = 0 | a ≠ 0 | aα = a0 = 1 |
α = -n (n ∈ N*) | a ≠ 0 | aα = a0 = 1/an |
α = m/n | a > 0 | |
α = lim rn (rn ∈ Q, n ∈ N*) | a > 0 |
2. Một số tính chất của lũy thừa
• Giả thuyết rằng mỗi biểu thức được xét đều có nghĩa:
• Nếu a > 1 thì aα > aβ ⇔ α > β ; Nếu ) < a < 1 thì aα > aβ ⇔ α < β .
• Với mọi 0 < a < b, ta có: am < bm ⇔ m > 0; am > bm ⇔ m < 0 ;
• Chú ý: - Các tính chất trên đúng trong trường hợp số mũ nguyên hoặc không nguyên.
- Khi xét lũy thừa với số mũ 0 và số mũ nguyên âm thì cơ số a phải khác 0.
- Khi xét lũy thừa với số mũ không nguyên thì cơ số a phải dương.
3. Một số tính chất của căn bậc n
• Với a, b ∈ R; n ∈ N*, ta có:
• Với a, b ∈ R ta có:
, ∀ a > 0, n nguyên dương, m nguyên
, ∀ a ≥ 0, n, m nguyên dương
, ∀ a > 0, m,n nguyên dương, p, q nguyên. Đặc biệt
B. Kĩ năng giải bài tập
1. Vận dụng thành thạo định nghĩa, tính chất của lũy thừa với số mũ hữu tỉ.
2. Công thức lãi kép.
a) Định nghĩa: Lãi kép là phần lãi của kì sau được tính trên số tiền gốc kì trước cộng với phần lãi của kì trước.
b) Công thức: Giả sử số tiền gốc là A; lãi suất r%/kì hạn gửi (có thể là tháng, quý hay năm).
● Số tiền nhận được cả gốc và lãi sau n kì hạn gửi là A(1 + r)n
● Số tiền lãi nhận được sau n kì hạn gửi là A(1 + r)n - A = A[(1 + r)n - 1]
c) Ví dụ: Bà Hoa gửi 100 triệu vào tài khoản định kỳ tính lãi kép với lãi suất là 8%/năm. Tính số tiền lãi thu được sau 10 năm.
Lời giải
Áp dụng công thức tính lãi kép, sau 10 năm số tiền cả gốc và lãi bà Hoa thu về là:
A(1 + r)n = 100tr.(1 + 0,08)10 ≈ 215,892tr.
Suy ra số tiền lãi bà Hoa thu về sau 10 năm là:
A(1 + r)n - A = 100tr(1 + 0,08)10 - 100tr = 115,892tr.
Lý thuyết Hàm số lũy thừa
A. Tóm tắt lý thuyết
1. Định nghĩa: Hàm số y = xα với α ∈ R được gọi là hàm số lũy thừa.
2. Tập xác định: Tập xác định của hàm số y = xα là:
• D = R nếu α là số nguyên dương.
• D = R \ {0} với α nguyên âm hoặc bằng 0
• D = (0; +∝) với α không nguyên.
3. Đạo hàm: Hàm số y = xα có đạo hàm với mọi x > 0 và (xα)' = α.xα - 1.
4. Tính chất của hàm số lũy thừa trên khoảng (0; +∝).
y = xα, α > 0 | y = xα, α < 0 |
a. Tập khảo sát: (0; +∝) | a. Tập khảo sát: (0; +∝) |
b. Sự biến thiên + y' = αxα - 1 > 0, ∀x > 0 + Giới hạn đặc biệt + Tiệm cận: không có | b. Sự biến thiên + y' = αxα - 1 < 0, ∀x > 0 + Giới hạn đặc biệt + Tiệm cận: không có - Trục 0x là tiệm cận ngang - Trục 0y là tiệm cận đứng. |
c. Bảng biến thiên | c. Bảng biến thiên |
d. Đồ thị:
Đồ thị của hàm số lũy thừa y = xα luôn đi qua điểm I(1; 1)
Lưu ý: Khi khảo sát hàm số lũy thừa với số mũ cụ thể, ta phải xét hàm số đó trên toàn bộ tập xác định của nó. Chẳng hạn: y = x3, y = x-2, y = xπ
B. Kĩ năng giải bài tập
Vận dụng thành thạo định nghĩa, tập xác định, cách tính đạo hàm, tính chất của hàm số lũy thừa.
Lý thuyết Lôgarit
A. Tóm tắt lý thuyết
1. Định nghĩa:
Cho hai số dương a, b với a ≠ 1 . Số α thỏa mãn đẳng thức aα = b được gọi là lôgarit cơ số a của b và kí hiệu là logab. Ta viết: α = logab ⇔ aα = b.
2. Các tính chất: Cho a, b > 0, a ≠ 1 ta có:
- logaa = 1, loga1 = 0
- alogab = b, loga(aα) = α
3. Lôgarit của một tích: Cho 3 số dương a, b1, b2 với a ≠ 1 , ta có
- loga(b1.b2) = logab1 + logab2
4. Lôgarit của một thương: Cho 3 số dương a, b1, b2 với a ≠ 1, ta có
-
- Đặc biệt : với a, b > 0, a ≠ 1
5. Lôgarit của lũy thừa: Cho a, b1, b2, a ≠ 1, với mọi α, ta có
- logabα = αlogab
- Đặc biệt:
6. Công thức đổi cơ số: Cho 3 số dương a, b, c với a ≠ 1, c ≠ 1 , ta có
-
- Đặc biệt : với α ≠ 0 .
+ Lôgarit thập phân và Lôgarit tự nhiên
+ Lôgarit thập phân là lôgarit cơ số 10. Viết: log10b = log b = lg b
+ Lôgarit tự nhiên là lôgarit cơ số e. Viết: logeb = ln b
B. Kĩ năng giải bài tập
1. Tính giá trị biểu thức
2. Rút gọn biểu thức
3. So sánh hai biểu thức
4. Biểu diễn giá trị logarit qua một hay nhiều giá trị logarit khác
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi tốt nghiệp THPT khác:
- Chủ đề: Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit
- Chủ đề: Phương trình mũ
- Chủ đề: Bất phương trình mũ
- Chủ đề: Phương trình logarit
- Chủ đề: Bất phương trình logarit
- Bài tập đồ thị hàm số mũ và logarit
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Sổ tay toán lý hóa 12 (29k/ 1 cuốn)
- Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
- 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7)
ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12
Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Từ khóa » Tóm Tắt Lý Thuyết Mũ Và Logarit
-
Tóm Tắt Lý Thuyết Và Trắc Nghiệm Mũ, Lũy Thừa, Logarit - Hocmai
-
Tóm Tắt Lý Thuyết Hàm Số Mũ Và Hàm Số Lôgarit
-
Tóm Tắt Lý Thuyết Lôgarit
-
Tóm Tắt Lý Thuyết Và Trắc Nghiệm Lũy Thừa, Mũ, Logarit
-
Tóm Tắt Lý Thuyết Và Trắc Nghiệm Lũy Thừa Mũ, Logarit
-
Tóm Tắt Lý Thuyết Và Trắc Nghiệm Lũy Thừa – Mũ – Logarit
-
Công Thức Logarit: Tóm Tắt Lý Thuyết Và Các Dạng Bài Tập - DinhNghia
-
Tóm Tắt Lý Thuyết Và Trắc Nghiệm Lũy Thừa – Mũ – Logarit - 123doc
-
Tóm Tắt Lý Thuyết Và Bài Tập Trắc Nghiệm Hàm Số Mũ Và Logarit
-
Tóm Tắt Lý Thuyết Và Trắc Nghiệm Lũy Thừa – Mũ – Logarit - Ôn Luyện
-
Lý Thuyết Hàm Số Mũ. Hàm Số Lôgarit Hay, Chi Tiết Nhất - Toán Lớp 12
-
Tóm Tắt Lý Thuyết Và Bài Tập Trắc Nghiệm Hàm Số Mũ Và Hàm Số ...
-
Tóm Tắt Lý Thuyết Và Trắc Nghiệm Lũy Thừa – Mũ – Logarit
-
Lý Thuyết Hàm Số Mũ. Hàm Số Lôgarit - Toán Lớp 12 - Haylamdo