Trắc Nghiệm Phân Tích đa Thức Thành Nhân Tử Bằng Phương Pháp ...

Xem toàn bộ tài liệu Lớp 8: tại đây

Bài 1: Phân tích đa thức x3y3 + 6x2y2 + 12xy + 8 thành nhân tử ta được

A. (xy + 2)3

B. (xy + 8)3          

C. x3y3 + 8  

D. (x3y3 + 2)3

Lời giải

Ta có x3y3 + 6x2y2 + 12xy + 8

          = (xy)3 + 3(xy)2.2 + 3xy.22 + 23 = (xy + 2)3

Đáp án cần chọn là: A

Bài 2: Phân tích đa thức 8x3 + 12x2y + 6xy2 + y3 thành nhân tử ta được

A. (x + 2y)3

B. (2x + y)3          

C. (2x – y)3 

D. (8x + y)3

Lời giải

Ta có 8x3 + 12x2y + 6xy2 + y3

= (2x)3 + 3.(2x)2y + 3.2x.y2 + y3 = (2x + y)3

Đáp án cần chọn là: B

Bài 3: Chọn câu đúng.

A. (5x – 4)2 – 49x2 = -8(3x + 1)(x + 2)

B. (5x – 4)2 – 49x2 = (3x – 1)(x + 2)

C. (5x – 4)2 – 49x2 = -8(3x – 1)(x – 2) 

D. (5x – 4)2 – 49x2 = -8(3x – 1)(x + 2)

Lời giải

Ta có (5x – 4)2 – 49x2 = (5x – 4)2 – (7x)2

          = (5x – 4 + 7x)(5x – 4 – 7x)

          = (12x – 4)(-2x – 4) = 4.(3x – 1).(-2)(x + 2)

          = -8(3x – 1)(x + 2)

Đáp án cần chọn là: D

Bài 4: Chọn câu đúng.

A. (3x – 2y)2 – (2x – 3y)2 = 5(x – y)(x + y)  

B. (3x – 2y)2 – (2x – 3y)2 = (5x – y)(x – 5y)

C. (3x – 2y)2 – (2x – 3y)2 = (x – y)(x + y)

D. (3x – 2y)2 – (2x – 3y)2 = 5(x – y)(x – 5y)

Lời giải

Ta có (3x – 2y)2 – (2x – 3y)2 = (3x – 2y + 2x – 3y)(3x – 2y – (2x – 3y))

          = (5x – 5y)(3x – 2y – 2x + 3y) = 5(x – y)(x + y)

Đáp án cần chọn là: A

Bài 5: Chọn câu sai.

Lời giải

Ta có:

+) 4x2 + 4x + 1 = (2x)2 + 2.2x.1 + 12 =  (2x + 1)2 nên A đúng

+) 9x2 – 24xy + 16y2 = (3x)2 – 2.3x.4y + (4y)2 = (3x – 4y)2 nên B đúng

+)  nên C đúng, D sai

Đáp án cần chọn là: D

Bài 6: Chọn câu sai.

A. x2 – 6x + 9 = (x – 3)2           

B. 4x2 – 4xy + y2 = (2x – y)2

C.

D. -x2 – 2xy – y2 = -(x – y)2

Lời giải

Ta có

+) x2 – 6x + 9 = x2 – 2.3x + 32 = (x – 3)2 nên A đúng

+) 4x2 – 4xy + y2 = (2x)2 – 2.2x.y + y2 = (2x – y)2 nên B đúng

+)

 nên C đúng

+) -x2 – 2xy – y2 = -(x2 + 2xy + y2) = -(x + y)2 nên D sai

Đáp án cần chọn là: D

Bài 7: Cho (4x2 + 4x – 3)2 – (4x2 + 4x + 3)2 = m.x(x + 1) với m Є R. Chọn câu đúng về giá trị của m.

A. m > 47   

B. m < 0     

C. m ⁝ 9      

D. m là số nguyên tố

Lời giải

Ta có (4x2 + 4x – 3)2 – (4x2 + 4x + 3)2

          = (4x2 + 4x – 3 + 4x2 + 4x + 3)(4x2 + 4x – 3 – 4x2 – 4x – 3)

          = (8x2 + 8x).(-6) = 8.x(x + 1).(-6)

          = -48x(x + 1) nên m = -48 < 0

Đáp án cần chọn là: B

Bài 8: Phân tích (a2 + 9)2 – 36a2 thành nhân tử ta được

A. (a – 3)2(a + 3)2                    

B. (a + 3)4            

C. (a2 + 36a + 9)(a2 – 36a + 9   

D. (a2 + 9)2

Lời giải

Ta có (a2 + 9)2 – 36a2 = (a2 + 9)2 – (6a)2

          = (a2 + 9 + 6a)(a2 + 9 – 6a) = (a + 3)2(a – 3)2

Đáp án cần chọn là: A

Bài 9: Cho 8x3 – 64 = (2x – 4)(…). Biểu thức thích hợp điền vào dấu … là

A. 2x2 + 8x + 8

B. 2x2 + 8x + 16

C. 4x2 – 8x+ 16

D. 4x2 + 8x + 16

Lời giải

Ta có 8x3 – 64 = (2x)3 – 43 = (2x – 4)(4x2 + 8x + 16)

Đáp án cần chọn là: D

Bài 10: Cho 27x3 – 0,001 = (3x – 0,1)(..). Biểu thức thích hợp điền vào dấu … là

A. 9x2 + 0,03x + 0,1                

B. 9x2 + 0,6x + 0,01

C. 9x2 + 0,3x + 0,01                

D. 9x2 – 0,3x + 0,01

Lời giải

Ta có 27x3 – 0,001 = (3x)3 – (0,1)3 = (3x – 0,1)((3x)2 + 3x.0,1 + 0,12)

          = (3x – 0,1)(9x2 + 0,3x + 0,01)

Đáp án cần chọn là: C

Bài 11: Phân tích đa thức  thành nhân tử, ta được

Lời giải

Ta có:

Đáp án cần chọn là: B

Bài 12: Phân tích đa thức  thành nhân tử, ta được

Lời giải

Ta có:  

Đáp án cần chọn là: C

Bài 13: Cho (x + y)3 – (x – y)3 = A.y(Bx2 + Cy2), biết A, B, C là các số nguyên. Khi đó A + B + C bằng

A. 4            

B. 5            

C. 6            

D. 7

Lời giải

Ta có (x + y)3 – (x – y)3

= [x + y – (x – y)][(x + y)2 + (x + y)(x – y) + (x – y)2]

= (x + y – x + y)(x2 + 2xy + y2 + x2 – y2 + x2 – 2xy + y2)

= 2y(3x2 + y2) ⇒ A = 2; B = 3; C = 1

Suy ra A + B + C = 2+ 3 + 1 = 6

Đáp án cần chọn là: C

Bài 14: Cho x6 – 1 = (x + A)(x + B)(x4 + x2 + C), biết A, B, C là các số nguyên. Khi đó A + B + C bằng

A. 0            

B. 1            

C. 2            

D. -1

Lời giải

Ta có x6 – 1 = (x2)3 – 1 = (x2 – 1)(x4 + x2 + 1)

                   = (x – 1)(x + 1)(x4 + x2 + 1)

⇒ A = -1; B = C = 1

Suy ra A + B + C = -1 + 1 + 1 = 1

Đáp án cần chọn là: B

Bài 15: Cho (4x2 + 2x – 18)2 – (4x2 + 2x)2 = m.(4x2 + 2x – 9). Khi đó giá trị của m là:

A. m = -18  

B. m = 36   

C. m = -36  

D. m = 18

Lời giải

Ta có (4x2 + 2x – 18)2 – (4x2 + 2x)2

          = (4x2 + 2x – 18 + 4x2 + 2x)(4x2 + 2x – 18 – 4x2 – 2x)

          = (8x2 + 4x – 18)(-18) = 2(4x2 + 2x – 9)(-18)

          = (-36)(4x2 + 2x – 18) ⇒ m = -36

Đáp án cần chọn là: C

Bài 16: Cho (x2 + y2 – 17)2 – 4(xy – 4)2 = (x + y + 5)(x – y + 3)(x + y + m)(x – y + n). Khi đó giá trị của m.n là

A. -8          

B. 5            

C. -15         

D. 15

Lời giải

Ta có

(x2 + y2 – 17)2 – 4(xy – 4)2 = (x2 + y2 – 17)2 – [2(xy – 4)]2

= (x2 + y2 – 17 + 2xy – 8)(x2 + y2 – 17 – 2xy + 8)

= (x2 + y2 + 2xy – 25)(x2 + y2 – 2xy – 9)

= [(x + y)2 – 52][(x – y)2 – 32]

= (x + y + 5)(x + y – 5)(x – y + 3)(x – y – 3)

Suy ra m = -5; n = -3 ⇒ m.n = (-5).(-3) = 15

Đáp án cần chọn là: D

Bài 17: Giá trị của x thỏa mãn 5x2 – 10x + 5 = 0

A. x = 1      

B. x = -1     

C. x = 2      

D. x = 5

Lời giải

Ta có 5x2 – 10x + 5 = 0

⇔ 5(x2 – 2x + 1) = 0

⇔ 5(x – 1)2 = 0

⇔ x – 1 = 0

⇔ x = 1

Vậy x = 1

Đáp án cần chọn là: A

Bài 18: Giá trị của x thỏa mãn  là

Lời giải

Ta có:

Đáp án cần chọn là: C

Bài 19: Có bao nhiêu giá trị của x thỏa mãn (2x – 5)2 – 4(x – 2)2 = 0?

A. 2            

B. 1            

C. 0            

D. 4

Lời giải

Ta có (2x – 5)2 – 4(x – 2)2 = 0

⇔ (2x – 5)2 – [2(x – 2)]2 = 0

⇔ (2x – 5)2 – (2x – 4)2 = 0

⇔ (2x – 5 + 2x – 4)(2x – 5 – 2x + 4) = 0

⇔ (4x – 9).(-1) = 0

⇔ -4x + 9 = 0

⇔ 4x = 9

⇔ x = 9/4

Đáp án cần chọn là: B

Bài 20: Có bao nhiêu giá trị của x thỏa mãn (x – 3)2 – 9(x + 1)2 = 0?

A. 2            

B. 1            

C. 0            

D. 4

Lời giải

Ta có:

Vậy có hai giá trị của x thỏa mãn là x = 0; x = -3

Đáp án cần chọn là: A

Bài 21: Gọi x1; x2; x3 là các giá trị thỏa mãn 4(3x – 5)2 – 9(9x2 – 25)2 = 0. Khi đó x1 + x2 + x3 bằng

Lời giải

Ta có 4(3x – 5)2 – 9(9x2 – 25)2 = 0

⇔ 4(3x – 5)2 – 9[(3x)2 – 52]2 = 0

⇔ 4(3x – 5)2 – 9[(3x – 5)(3x + 5)]2 = 0

⇔ 4(3x – 5)2 – 9(3x – 5)2(3x + 5)2 = 0

⇔ (3x – 5)2[4 – 9(3x + 5)2] = 0

⇔ (3x – 5)2[4 – (3(3x + 5))2] = 0

⇔ (3x – 5)2(22 – (9x + 15)2) = 0

⇔ (3x – 5)2(2 + 9x + 15)(2 – 9x – 15) = 0

⇔ (3x – 5)2(9x + 17)(-9x – 13) = 0

Đáp án cần chọn là: C

Bài 22: Cho các phương trình (x + 2)3 + (x – 3)3 = 0 (1) ; (x2 + x – 1)2 + 4x2 + 4x = 0 (2). Chọn câu đúng

A. Phương trình (1) có hai nghiệm, phương trình (2) vô nghiệm

B. Phương trình (1) có 1 nghiệm, phương trình (2) có 2 nghiệm

C. Phương trình (1) vô nghiệm, phương trình (2) vô nghiệm

D. Phương trình (1) có 1 nghiệm, phương trình (2) vô nghiêm

Lời giải

Xét phương trình (1) ta có:

  

Xét phương trình (2) ta có (x2 + x – 1)2 + 4x2 + 4x = 0 (2)

  

 > 0, Ɐx nên phương trình (2) vô nghiệm

Vậy Phương trình (1) có 1 nghiệm, phương trình (2) vô nghiêm

Đáp án cần chọn là: D

Bài 23: Cho x + n = 2(y – m), khi đó giá trị của biểu thức A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2 bằng

A. A = 1     

B. A = 0     

C. A = 2     

D. Chưa đủ dữ kiện để tính

Lời giải

Ta có: A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2

          = x2 – 2x.2y + (2y)2 – (4m2 + 4mn + n2)

          = (x – 2y)2 – (2m + n)2

          = (x – 2y + 2m + n)(x – 2y – 2m – n)

Ta có: x + n = 2(y – m) ⇔ x + n = 2y – 2m

⇔ x + n = 2y – 2m

⇔ x – 2y +n + 2m = 0

Thay x – 2y + n + 2m = 0 vào A ta được

A = 0.(x – 2y – 2m – n) = 0

Vậy A = 0

Đáp án cần chọn là: B

Bài 24: Cho x – 4 = -2y. Khi đó giá trị của biểu thức M = (x + 2y – 3)2 – 4(x + 2y – 3) + 4 bằng

A. M = 0    

B. M = -1   

C. M = 1     

D. Đáp án khác

Lời giải

Ta có: M = (x + 2y – 3)2 – 4(x + 2y – 3) + 4

          = (x + 2y – 3)2 – 2(x + 2y – 3).2 + 22

          = (x + 2y – 3 – 2)2 = (x + 2y – 5)2

Ta có: x – 4 = -2y ⇔ x + 2y = 4

Thay x + 2y = 4 vào M ta được

M = (4 – 5)2 = (-1)2 = `

Vậy M = 1

Đáp án cần chọn là: C

Bài 25: Cho 9a2 – (a – 3b)2 = (m.a + n.b)(4a – 3b) với m, n Є R. Khi đó, giá trị của m và n là

A. m = -2; n = -3

B. m = 3; n = 2

C. m = 3; n = -4

D. m = 2; n = 3

Lời giải

Ta có: 9a2 – (a – 3b)2 = (3a)2 – (a – 3b)2 = (3a + a – 3b)(3a – a + 3b)

                             = (4a – 3b)(2a + 2b)

Suy ra m = 2; n = 3

Đáp án cần chọn là: D

Bài 26: Đa thức 4b2c2 – (c2 + b2 – a2)2 được phân tích thành

A. (b + c + a)(b + c – a)(a + b – c)(a – b + c)

B. (b + c + a)(b – c – a)(a + b – c)(a – b + c)

C. (b + c + a)(b + c – a)(a + b – c)2

D. (b + c + a)(b + c – a)(a + b – c)(a – b – c)

Lời giải

Ta có 4b2c2 – (c2 + b2 – a2)2

          = (2bc)2 – (c2 + b2 – a2)2

          = (2bc + c2 + b2 – a2)(2bc – c2 – b2 + a2)

          = [(b + c)2 – a2][a2 – (b2 – 2bc + c2)]

          = [(b + c)2 – a2][a2 – (b – c)2]

          = (b + c + a)(b + c – a)(a + b – c)(a – b + c)

Đáp án cần chọn là: A

Bài 27: Đa thức x6 – y6 được phân tích thành

A. (x + y)2(x2 – xy + y2)(x2 + xy + y2)

B. (x + y)(x2 – 2xy + y2)(x – y)(x2 + 2xy + y2)

C. (x + y)(x2 – xy + y2)(x – y)(x2 + xy + y2)

D. (x + y)(x2 + 2xy + y2)(y – x)(x2 + xy + y2)

Lời giải

Ta có

x6 – y6 = (x3)2 – (y3)2 = (x3 + y3)(x3 – y3)

= (x + y)(x2 – xy + y2)(x – y)(x2 + xy + y2)

Đáp án cần chọn là: C

Bài 28: Tính giá trị biểu thức P = x3 – 3x2 + 3x với x = 101

A. 1003+ 1  

B. 1003 – 1 

C. 1003       

D. 1013

Lời giải

Ta có

P = x3 – 3x2 + 3x – 1 + 1 = (x – 1)3 + 1

Thay x = 101 vào P ta được

P = (101 – 1)3 + 1 = 1003 + 1

Đáp án cần chọn là: A

Bài 29: Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

A. 8            

B. 9            

C. 10          

D. Cả A, B, C đều sai

Lời giải

Gọi hai số lẻ liên tiếp là 2k – 1; 2k + 1 (k Є N*)

Theo bài ra ta có

(2k + 1)2 – (2k – 1)2 = 4k2 + 4k + 1 – 4k2 + 4k – 1 = 8k ⁝ 8

Đáp án cần chọn là: A

Bài 30: Có bao nhiêu cặp số nguyên (x; y) thỏa mãn x2 + 102 = y2

A. 0            

B. 1            

C. 2            

D. 3

Lời giải

Ta có x2 + 102 = y2 ⇔ y2 – x2 = 102

Nhận thấy hiệu hai bình phương là một số chẵn nên x, y cùng là số chẵn hoặc cùng là số lẻ

Suuy ra y – x; y + x luôn là số chẵn

Lại có y2 – x2 = 102 ⇔ (y – x)(y + x) = 102

Mà (y – x) và (y + x) cùng là số chẵn.

Suy ra (y – x)(y + x) chia hết cho 4 mà 102 không chia hết cho 4 nên không tồn tại cặp số x; y thỏa mãn đề bài

Đáp án cần chọn là: A

Bài 32: Cho x + y = a + b; x2 + y2 = a2 + b2. Với n Є N*, chọn câu đúng

A. xn + yn = an – bn                   

B. xn + yn = 2(an + bn)

C. xn + yn = an + bn                   

D. xn + yn =  

Lời giải

Ta có: x2 + y2 = a2 = b2 ⇔ x2 – a2 = b2 – y2

⇔ (x – a)(x + a) = (b – y)(b + y)

Mà x + y = a + b ⇔ x – a = b – y nên ta có

(x – a)(x + a) = (x – a)(b + y)

⇔ (x – a)(x + a) – (x – a)(b + y) = 0

⇔ (x – a)(x + a – b – y) = 0

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1016

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

Từ khóa » Phân Tích (x-2 Y)^3