Vị Trí Tương đối Của Hai đường Tròn - Lý Thuyết Toán 9

  1. Trang chủ
  2. Lý thuyết toán học
  3. Toán 9
  4. CHƯƠNG 6: ĐƯỜNG TRÒN
  5. Vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn Trang trước Mục Lục Trang sau

1. Các kiến thức cần nhớ

a. Vị trí tương đối của hai đường tròn

Trường hợp 1: Hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $\left( {R > r} \right)$ cắt nhau

Khi đó $\left( O \right)$ và $\left( {O'} \right)$ có hai điểm chung và đường nối tâm là đường trung trực của đoạn $AB$.

Hệ thức liên hệ $R - r < OO' < R + r$

Trường hợp 2: Hai đường tròn tiếp xúc

+) Hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $\left( {R > r} \right)$ tiếp xúc trong tại $A$.

Khi đó $A$ nằm trên đường nối tâm và $OO' = R - r$.

+) Hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $\left( {R > r} \right)$ tiếp xúc ngoài tại $A$.

Khi đó $A$ nằm trên đường nối tâm và $OO' = R + r$.

Trường hợp 3: Hai đường tròn không giao nhau

+) Hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$$\left( {R > r} \right)$ ở ngoài nhau.

Ta có $OO' > R + r$

+) Hai đường tròn đựng nhau

Ta có $OO' < R - r$

+) Hai đường tròn đồng tâm

Ta có $OO' = 0$.

Ta có bảng sau

Sự liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm $d$ và các bán kính $R$$r$

Vị trí tương đối của hai đường tròn $\left( {O;R} \right)$$\left( {O';r} \right)$ với $R > r$

Số

điểm chung

Hệ thức giữa $d$$R,r$

Hai đường tròn cắt nhau

$2$

$R-r < d < R + r$

Hai đường tròn tiếp xúc nhau

$1$

- Tiếp xúc ngoài

$d = R + r$

- Tiếp xúc trong

$d = R--r$

Hai đường tròn không giao nhau

$0$

-Ở ngoài nhau

$d > R + r$

- $\left( O \right)$ đựng \(\left( {O'} \right)\)

$d < R - r$

- $\left( O \right)$ và \(\left( {O'} \right)\) đồng tâm

$d = 0$

b. Tính chất đường nối tâm

Đường nối tâm là trục đối xứng của hình tạo bởi hai đường tròn. Từ đó suy ra :

- Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm.

- Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung.

2. Các dạng toán thường gặp

Dạng 1: Các bài toán có hai đường tròn tiếp xúc với nhau

Phương pháp:

Sử dụng tính chất hai đường tròn tiếp xúc:

+ Tiếp điểm nằm trên đường nối tâm

+) Hệ thức \(d = R + r\)

Khi làm có thể vẽ tiếp tuyến chung của hai đường tròn (nếu cần)

Dạng 2: Các bài toán có hai đường tròn cắt nhau

Phương pháp:

Nối dây chung của hai đường tròn rồi dùng tính chất đường nối tâm của hai đường tròn

Hệ thức liên hệ : $R-r < d < R + r$

Dạng 3: Các bài toán tính độ dài, diện tích

Phương pháp:

Sử dụng tính chất đường nối tâm, tính chất tiếp tuyến.

Sử dụng định lý Pytago và hệ thức lượng trong tam giác vuông.

Trang trước Mục Lục Trang sau

Có thể bạn quan tâm:

  • Ôn tập chương 6: ĐƯỜNG TRÒN
  • Đường thẳng song song với mặt phẳng
  • Hai mặt phẳng song song
  • Ôn tập chương 2
  • Vị trí tương đối của đường thẳng với đường tròn

Tài liệu

Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống

Tạp chí toán học và tuổi trẻ số 489 ra tháng 3 năm 2018

Tạp chí toán học và tuổi trẻ số 489 ra tháng 3 năm 2018

Tạp chí toán học và tuổi trẻ số 493 - tháng 7 2018

Tạp chí toán học và tuổi trẻ số 493 - tháng 7 2018

Ví dụ và bài tập phương trình, bất phương trình và hệ phương trình – Trần Văn Toàn

Ví dụ và bài tập phương trình, bất phương trình và hệ phương trình – Trần Văn Toàn

Toán 11: Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp

Toán 11: Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp

Từ khóa » Tính Chất Hai đường Tròn Tiếp Xúc Trong