2. Tổng Và Hiệu Của Hai Vectơ - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng- Lớp 10
- Toán lớp 10
- Chương 1: VECTƠ
Chủ đề
- §1. Các định nghĩa
- §2. Tổng và hiệu của hai vectơ
- §3. Tích của vectơ với một số
- §4. Hệ trục tọa độ
- Ôn tập chương I
- Lý thuyết
- Trắc nghiệm
- Giải bài tập SGK
- Hỏi đáp
- Đóng góp lý thuyết
Câu hỏi
Hủy Xác nhận phù hợp- Nguyễn Michelle
Cho hình bình hành ABCD có tâm là O và gọi G là trọng tâm tam giác ABC
a. Chứng minh \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=\overrightarrow{BA}\)
b. Xác định điểm M sao cho: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}=\overrightarrow{AD}\)
Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 0 Gửi Hủy Akai Haruma Giáo viên 24 tháng 9 2017 lúc 21:08Lời giải:
a) Gọi giao của hai đường chéo là $I$ thì $I$ là trung điểm của $AD$ và $BC$
Do đó, \(A,G,I,D\) thẳng hàng. Áp dụng tính chất của đường trung tuyến:
\(\bullet \overrightarrow{GA}=\frac{-1}{3}\overrightarrow{AD}\)
\(\bullet \overrightarrow{GB}=\overrightarrow{GA}+\overrightarrow{AB}\)
\(\bullet \overrightarrow{GD}=\frac{2}{3}\overrightarrow{AD}\)
\(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=2\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{GD}=\frac{-2}{3}\overrightarrow{AD}+\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}\)
\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=\overrightarrow{AB}\)
b) Áp dụng công thức phần a:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}=\overrightarrow{AD}\)
\(\Leftrightarrow \overrightarrow{AB}-\overrightarrow{GD}+\overrightarrow{GM}=\overrightarrow{AD}\)
\(\Leftrightarrow \overrightarrow{GM}-\overrightarrow{GD}=\overrightarrow{AD}-\overrightarrow{AB}\)
\(\Leftrightarrow \overrightarrow{DM}=\overrightarrow{BD}\)
Do đó $M$ là điểm nằm trên đường thằng $BD$ sao cho $D$ là trung điểm của $BM$
Đúng 0 Bình luận (1) Gửi Hủy Các câu hỏi tương tự- Nguyễn Hoàng Phương
cho hình bình hành ABCD tâm O. CMR:
a) \(\overrightarrow{CO}\) - \(\overrightarrow{OB}\) = \(\overrightarrow{BA}\)
b)\(\overrightarrow{AB}\) - \(\overrightarrow{BC}\) = \(\overrightarrow{DB}\)
c)\(\overrightarrow{DA}\) - \(\overrightarrow{DB}\) = \(\overrightarrow{OD}\) - \(\overrightarrow{OC}\)
d)\(\overrightarrow{DA}\) - \(\overrightarrow{DB}\) + \(\overrightarrow{DC}\) = \(\overrightarrow{0}\)
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 1- Đinh Quỳnh Hương Giang
câu 1: cho tứ giác ABCD. Gọi O là trung điểm của AB.
Chứng minh rằng: \(\overrightarrow{OD}+\overrightarrow{OC}=\overrightarrow{AD}+\overrightarrow{BC}\)
Câu 2: Cho tam giác ABC. Gọi A' là điểm đối xứng của B qua A, B' là điểm dối xứng của C qua B, C' là điểm đối xứng của A qua C. Với một điểm O bất kì, chứng minh rằng:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 2 0
- Bài 6
Cho hình bình hành ABCD có tâm O. Chứng minh rằng :
a) \(\overrightarrow{CO}-\overrightarrow{OB}=\overrightarrow{BA}\)
b) \(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{DB}\)
c) \(\overrightarrow{DA}-\overrightarrow{DB}=\overrightarrow{OD}-\overrightarrow{OC}\)
d) \(\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 1- Bài 1.19
Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng :
a) \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
b) \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 0- Nguyễn Trịnh Trâm Anh
Cho tứ giác ABCD. Gọi E, F, O lần lượt là trung điểm của AC, BD, EF. Chứng minh:\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 0- Bài 1.12
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Chứng minh rằng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{O}\) ?
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 0- Hoàng Yến Nghiêm
Cho tam giác ABC có O là trung điểm AC, E và F thuộc AC sao cho O là trung điểm EF. C/m \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{BF}\)
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 0- Bài 4
Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh rằng \(\overrightarrow{RJ}+\overrightarrow{IQ}+\overrightarrow{PS}=\overrightarrow{O}\) ?
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 0- Bài 2
Cho hình bình hành ABCD và một điểm M tùy ý. Chứng minh rằng \(\overrightarrow{MA+}\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\) ?
Xem chi tiết Lớp 10 Toán §2. Tổng và hiệu của hai vectơ 1 0Khoá học trên OLM (olm.vn)
- Toán lớp 10 (Kết nối tri thức với cuộc sống)
- Toán lớp 10 (Cánh Diều)
- Toán lớp 10 (Chân trời sáng tạo)
- Ngữ văn lớp 10 (Kết nối tri thức với cuộc sống)
- Ngữ văn lớp 10 (Cánh Diều)
- Ngữ văn lớp 10 (Chân trời sáng tạo)
- Tiếng Anh lớp 10 (i-Learn Smart World)
- Tiếng Anh lớp 10 (Global Success)
- Vật lý lớp 10 (Kết nối tri thức với cuộc sống)
- Vật lý lớp 10 (Cánh diều)
- Hoá học lớp 10 (Kết nối tri thức với cuộc sống)
- Hoá học lớp 10 (Cánh diều)
- Sinh học lớp 10 (Kết nối tri thức với cuộc sống)
- Sinh học lớp 10 (Cánh diều)
- Lịch sử lớp 10 (Kết nối tri thức với cuộc sống)
- Lịch sử lớp 10 (Cánh diều)
- Địa lý lớp 10 (Kết nối tri thức với cuộc sống)
- Địa lý lớp 10 (Cánh diều)
- Giáo dục kinh tế và pháp luật lớp 10 (Kết nối tri thức với cuộc sống)
- Giáo dục kinh tế và pháp luật lớp 10 (Cánh diều)
- Lập trình Python cơ bản
Khoá học trên OLM (olm.vn)
- Toán lớp 10 (Kết nối tri thức với cuộc sống)
- Toán lớp 10 (Cánh Diều)
- Toán lớp 10 (Chân trời sáng tạo)
- Ngữ văn lớp 10 (Kết nối tri thức với cuộc sống)
- Ngữ văn lớp 10 (Cánh Diều)
- Ngữ văn lớp 10 (Chân trời sáng tạo)
- Tiếng Anh lớp 10 (i-Learn Smart World)
- Tiếng Anh lớp 10 (Global Success)
- Vật lý lớp 10 (Kết nối tri thức với cuộc sống)
- Vật lý lớp 10 (Cánh diều)
- Hoá học lớp 10 (Kết nối tri thức với cuộc sống)
- Hoá học lớp 10 (Cánh diều)
- Sinh học lớp 10 (Kết nối tri thức với cuộc sống)
- Sinh học lớp 10 (Cánh diều)
- Lịch sử lớp 10 (Kết nối tri thức với cuộc sống)
- Lịch sử lớp 10 (Cánh diều)
- Địa lý lớp 10 (Kết nối tri thức với cuộc sống)
- Địa lý lớp 10 (Cánh diều)
- Giáo dục kinh tế và pháp luật lớp 10 (Kết nối tri thức với cuộc sống)
- Giáo dục kinh tế và pháp luật lớp 10 (Cánh diều)
- Lập trình Python cơ bản
Từ khóa » Trọng Tâm Hbh
-
Cho Hình Bình Hành ABCD. Gọi G Là Trọng Tâm Của Tam Giác ABC
-
Cho Hình Bình Hành ABCD Gọi G Là Trọng Tâm Tam Giác ABC
-
Cho Hình Bình Hành ABCD Tâm I; G Là Trọng Tâm Tam Giác BCD. Đẳng ...
-
Cho Hình Bình Hành ABCD. Gọi G Là Trọng Tâm ...
-
Cho Hình Bình Hành ABCD, Gọi G Là Trọng Tâm Tam Giác ABD
-
Cho Hình Bình Hành ABCD Gọi G Là Trọng Tâm Tam Giác ABC Chứng ...
-
Cho Hình Bình Hành Abcd , Tâm O , Gọi G Là Trọng Tâm Tam Giác Abd ...
-
Cho Hình Bình Hành $ABCD.$ Điểm $G$ Là Trọng Tâm Tam Giác $ABC ...
-
Cho Hình Bình Hành $ABCD$. Gọi $G$ Là Trọng Tâm Tam Giác $ABC ...
-
Hình Bình Hành. Đối Xứng Tâm
-
Cho Hình Bình Hành ABCD Tâm O. Gọi G Là Trọng Tâm Của Tam Giác ...
-
Cho HBH ABCD. Gọi MN Lần Lượt Là Các điểm Trên Cạnh AD, BC Thoả ...
-
Cho Hình Chóp S.ABCD Có đáy Là Hình Bình Hành ABCD. Gọi G Là Trọng
-
Trong Mặt Phẳng Oxy, Cho Hbh ABCD Co A(2;-3), B(4 - MTrend