Bài 2: Hàm Số Lũy Thừa - Tìm đáp án, Giải Bài Tập, để Học Tốt
Có thể bạn quan tâm
1. Khái niệm hàm số luỹ thừa
Hàm số luỹ thừa là hàm số có dạng \(y=x^{\alpha}\), trong đó \(\alpha\) là một hằng số tuỳ ý. Từ định nghĩa các luỹ thừa, ta thấy:
- Hàm số \(y=x^n\) với n nguyên dương, xác định với mọi \(x \in \mathbb{R}\).
- Hàm số \(y=x^n\), với n nguyên âm hoặc n = 0, xác định với mọi \(x \in \mathbb{R}\backslash \left\{ 0 \right\}\).
- Hàm số \(y=x^{\alpha}\), với \(\alpha\) không nguyên, có tập xác định là tập hợp các số thực dương \(\left( {0; + \infty } \right)\)
Người ta chứng minh được rằng hàm số lũy thừa liên tục trên tập xác định của nó.
Chú ý:
Theo định nghĩa, đẳng thức \(\sqrt[n]{x} = {x^{\frac{1}{n}}}\) chỉ xảy ra nếu \(x>0\) do đó, hàm số \(y=x^\frac{1}{n}\) không đồng nhất với hàm số \(y = \sqrt[n]{x}(n \in {\mathbb{N}^*})\). Chẳng hạn, hàm số \(y = \sqrt[3]{x}\) là hàm số căn bậc ba, xác định với mọi \(x \in \mathbb{R}\); còn hàm số luỹ thừa \(y=x^\frac{1}{3}\) chỉ xác định trên \(\left( {0; + \infty } \right)\).
2. Đạo hàm của hàm số luỹ thừa
a) Định lý
- Hàm số luỹ thừa \(y = {x^\alpha }(\alpha \in \mathbb{R})\) có đạo hàm tại mọi điểm \(x>0\) và \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha - 1}}\).
- Nếu hàm số \(u=u(x)\) nhận giá trị dương và có đạo hàm trên \(J\) thì hàm số \(y = {u^\alpha }(x).\) cũng có đạo hàm trên \(J\) và \(\left( {{u^\alpha }\left( x \right)} \right)' = \alpha .{u^{\alpha - 1}}(x).u'(x)\).
b) Chú ý:
- Áp dụng định lí trên, ta dễ dàng chứng minh công thức đạo hàm của hàm số căn bậc n sau đây: \(\left( {\sqrt[n]{x}} \right)' = \frac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\) (với mọi \(x>0\) nếu n chẵn, với mọi \(x\ne0\) nếu n lẻ).
- Nếu \(u=u(x)\) là hàm số có đạo hàm trên \(J\) và thoả mãn điều kiện \(u(x)>0\) với mọi \(x \in J\) khi n chẵn, \(u(x)\ne0\) với mọi \(x \in J\) khi n lẻ thì:
\(\left( {\sqrt[n]{{u(x)}}} \right)' = \frac{{u'(x)}}{{n\sqrt[n]{{{u^{n - 1}}(x)}}}}\,\left( {\forall x \in J} \right)\)
Nhận xét: Do \(1^\alpha =1\) với mọi \(\alpha\) nên đồ thị của mọi hàm số lũy thừa đều đi qua điểm (1;1).
3. Khảo sát hàm số lũy thừa \(y=x^{\alpha}\)
- Tập xác định của hàm số lũy thừa luôn chưa khoảng \(\left( {0; + \infty } \right)\) với mọi \(\alpha \in \mathbb{R}\).
- Trong trường hợp tổng quát ta khảo sát hàm số \(y=x^{\alpha}\) trên khoảng này, ta được bảng tóm tắt sau:
- Hình dạng của đồ thị hàm số lũy thừa trong các trường hợp xét trên tập \(\left( {0; + \infty } \right)\):
Chú ý:
Khi khảo sát hàm số lũy thừa với số mũ cụ thể, ta phải xét hàm số đó trên toàn bộ tập xác định của nó.
4. Bài tập minh họa
Ví dụ 1:
Tìm tập xác định của các hàm số sau:
a) \(y=x^6\)
b) \(y=(1-x)^{\sqrt2}\)
c) \(y=(x+2)^{-3}\)
Lời giải:
a) Hàm số \(y=x^6\) xác định với mọi \(x\in\mathbb{R}\).
Vậy tập xác định của hàm số là \(D=\mathbb{R}.\)
b) Hàm số \(y=(1-x)^{\sqrt2}\) xác định khi \(1 - x > 0 \Leftrightarrow x < 1.\)
Vậy tập xác định của hàm số là \(D = \left( { - \infty ;1} \right)\).
c) Hàm số \(y=(x+2)^{-3}\) xác định khi \(x + 2 \ne 0 \Leftrightarrow x \ne - 2\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)
Ví dụ 2:
Tính đạo hàm các hàm số
a) \(y = {x^{\sqrt 2 + 1}}\)
b) \(y = {x^{3\pi }}\)
c) \(y=x^{-0,9}\)
Lời giải:
a) \(y' = - \frac{1}{2}{x^{ - \frac{1}{2} - 1}} = - \frac{1}{2}{x^{ - \frac{3}{2}}} = - \frac{1}{{2\sqrt {{x^3}} }}.\)
b) \(y' = 3\pi .{x^{3\pi - 1}}\).
c) \(y' = - 0,9{x^{ - 0,9 - 1}} = - 0,9{x^{ - 1,9}}.\)
Ví dụ 3:
Tính đạo hàm các hàm số sau:
a) \(y = {(2x + 1)^\pi }\)
b) \(y = {(3{x^2} - 1)^{ - \sqrt 2 }}\)
c) \(y = {\left( {2{x^2} + x - 1} \right)^{\frac{2}{3}}}\)
Lời giải:
a) \(y' = \pi {(2x + 1)^{\pi - 1}}(2x + 1)' = 2\pi {(2x + 1)^{\pi - 1}}.\)
b) \(y' = - \sqrt 2 {\left( {3{x^2} - 1} \right)^{ - \sqrt 2 - 1}}(3{x^2} - 1)' = - 6\sqrt 2 x{(3{x^2} - 1)^{ - \sqrt 2 - 1}}.\)
c) \(y' = \frac{2}{3}{(2{x^2} + x - 1)^{ - \frac{1}{3}}}(4x + 1).\)
Từ khóa » đạo Hàm Hàm Số Lũy Thừa Có Căn
-
Cách Tính đạo Hàm Của Hàm Số Lũy Thừa
-
Tính đạo Hàm Của Hàm Số Lũy Thừa, Hàm Số Mũ Và Hàm Số Logarit
-
Cách Tính đạo Hàm Của Hàm Số Lũy Thừa Nhanh, Chính Xác
-
Bảng đạo Hàm Của Các Hàm Số Cơ Bản (thường Gặp) - MathVn.Com
-
Hàm Số Lũy Thừa Là Gì? Cách Tính đạo Hàm Của Hàm Số ... - KhoiA.Vn
-
Hàm Số Lũy Thừa Và Hàm Số Mũ, Trắc Nghiệm Toán Học Lớp 12
-
Công Thức Đạo Hàm Log, Căn Bậc 3 , Căn U, Căn X, Căn Logarit
-
Đầy đủ Lý Thuyết Và Bài Tập đạo Hàm Mũ Và Logarit
-
- Đạo Hàm Cấp Cao Hàm Lũy Thừa Có Chứa Căn Thức - YouTube
-
Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Logarit Cực đơn Giản [VD ...
-
Công Thức đạo Hàm: Log, Logarit, Căn Bậc 3, Căn X, Lượng Giác Chuẩn ...
-
Hàm Số Lũy Thừa Là Gì? Đao Hàm Hàm Số Lũy Thừa Toán 12
-
Lý Thuyết Hàm Số Lũy Thừa, Số Mũ - ôn Luyện Toán Cấp 3