Bài 2 Trang 105 SGK Đại Số 10 | SGK Toán Lớp 10

LG a

\(f(x) =(3{x^2} - 10x + 3)(4x - 5)\);

Phương pháp giải:

Cho nhị thức: \(f(x)=a x+b\) ta có:

+) \(f(x)\) cùng dấu với hệ số \(a\) khi \(x \in\left( { - \frac{b}{a};\, + \infty } \right).\)

+) \(f(x)\) trái dấu với hệ số \(a\) khi \(x \in \left( { + \infty ; \, - \frac{b}{a}} \right)\)

Cho đa thức bậc hai: \(f\left( x \right) = a{x^2} + bx + c\;\;\left( {a \ne 0} \right),\;\;\)\(\Delta  = {b^2} - 4ac.\)

+) Nếu \(\Delta < 0\) thì \(f(x)\) luôn cùng dấu với hệ số \(a,\) với mọi \(x \in R.\)

+) Nếu \(\Delta = 0\) thì \(f(x)\) luôn cùng dấu với hệ số \(a,\) trừ khi \(x=-\frac{b}{2a}.\)

+) Nếu \(\Delta > 0\) thì \(f(x)\) luôn cùng dấu với hệ số \(a\) khi \(x < x_1\) hoặc \(x > x_2,\) trái dấu với hệ số \(a\) khi \(x_1 < x < x_2\) trong đó \(x_1, \, \, x_2 \, \, (x_1 < x_2)\) là hai nghiệm của \(f(x).\)

Lời giải chi tiết:

\(f(x) =(3{x^2} - 10x + 3)(4x - 5)\) 

Ta có:

\(4x - 5 = 0 \Leftrightarrow x = \dfrac{5}{4}\)

\(3{x^2} - 10x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = \dfrac{1}{3}\end{array} \right.\)

Tam thức bậc hai \(3{x^2} - 10x + 3\) có hệ số \(a=3>0\) nên mang dấu "+" khi \(x > 3\) hoặc \(x < \dfrac{1}{3}\) và mang dấu “-“ nếu \(\dfrac{1}{3} < x < 3\).

Xét dấu nhị thức \(4x - 5\) và \(3{x^2} - 10x + 3\) ta được bảng xét dấu:

Kết luận:

\(f(x) < 0\) với \(x \in \left( { - \infty ;{1 \over 3}} \right) \cup \left( {{5 \over 4};3} \right)\)

\(f(x) > 0\) với \(x \in \left( {{1 \over 3};{5 \over 4}} \right) \cup \left( {3; + \infty } \right)\)

Từ khóa » Bài Tập 2 Toán 10 Trang 105