Giải Toán Lớp 10 SGK Tập 1 Trang 105 Chính Xác Nhất
Có thể bạn quan tâm
Nội dung bài viết
- Giải bài 1 trang 105 SGK Toán lớp 10 tập 1
- Giải bài 2 SGK Toán lớp 10 trang 105 tập 1
- Giải bài 3 SGK Toán lớp 10 tập 1 trang 105
- Giải SGK Toán lớp 10 tập 1 bài 4 trang 105
Hướng dẫn giải sách giáo khoa Toán lớp 10 trang 105 bài: Dấu của tam thức bậc hai đầy đủ, chi tiết nhất. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị tốt nhất cho bài học sắp tới nhé.
Giải bài 1 trang 105 SGK Toán lớp 10 tập 1
Xét dấu các tam thức bậc hai:
a) 5x2 - 3x + 1 ; b) -2x2 + 3x + 5
c) x2 + 12x + 36 ; d) (2x - 3)(x + 5)
Lời giải
a) Tam thức f(x) = 5x2 – 3x + 1 có Δ = 9 – 20 = –11 < 0 nên f(x) cùng dấu với hệ số a.
Mà a = 5 > 0
Do đó f(x) > 0 với ∀ x ∈ R.
b) Tam thức f(x) = –2x2 + 3x + 5 có Δ = 9 + 40 = 49 > 0.
Tam thức có hai nghiệm phân biệt x1 = –1; x2 = 5/2, hệ số a = –2 < 0
Ta có bảng xét dấu:
Vậy f(x) > 0 khi x ∈ (–1; 5/2)
f(x) = 0 khi x = –1 ; x = 5/2
f(x) < 0 khi x ∈ (–∞; –1) ∪ (5/2; +∞)
c) Tam thức f(x) = x2 + 12x + 36 có một nghiệm là x = –6, hệ số a = 1 > 0.
Ta có bảng xét dấu:
Vậy f(x) > 0 với ∀ x ≠ –6
f(x) = 0 khi x = –6
d) f(x) = (2x – 3)(x + 5) = 2x2 + 7x – 15
Tam thức f(x) = 2x2 + 7x – 15 có hai nghiệm phân biệt x1 = 3/2; x2 = –5, hệ số a = 2 > 0.
Ta có bảng xét dấu:
Vậy f(x) > 0 khi x ∈ (–∞; –5) ∪ (3/2; +∞)
f(x) = 0 khi x = –5 ; x = 3/2
f(x) < 0 khi x ∈ (–5; 3/2).
Giải bài 2 SGK Toán lớp 10 trang 105 tập 1
Lập bảng xét dấu các biểu thức sau:
a) f(x) = (3x2 - 10x + 3)(4x - 5)
b) f(x) = (3x2 - 4x)(2x2 - x - 1)
c) f(x) = (4x2 - 1)(-8x2 + x - 3)(2x + 9)
Lời giải
a) f(x) = (3x2 – 10x + 3)(4x – 5)
+ Tam thức 3x2 – 10x + 3 có hai nghiệm x = 1/3 và x = 3, hệ số a = 3 > 0 nên mang dấu + nếu x < 1/3 hoặc x > 3 và mang dấu – nếu 1/3 < x < 3.
+ Nhị thức 4x – 5 có nghiệm x = 5/4.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 khi x ∈ (1/3; 5/4) ∪ x ∈ (3; +∞)
f(x) = 0 khi x ∈ {1/3; 5/4; 3}
f(x) < 0 khi x ∈ (–∞; 1/3) ∪ (5/4; 3)
b) f(x) = (3x2 – 4x)(2x2 – x – 1)
+ Tam thức 3x2 – 4x có hai nghiệm x = 0 và x = 4/3, hệ số a = 3 > 0.
Do đó 3x2 – 4x mang dấu + khi x < 0 hoặc x > 4/3 và mang dấu – khi 0 < x < 4/3.
+ Tam thức 2x2 – x – 1 có hai nghiệm x = –1/2 và x = 1, hệ số a = 2 > 0
Do đó 2x2 – x – 1 mang dấu + khi x < –1/2 hoặc x > 1 và mang dấu – khi –1/2 < x < 1.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 ⇔ x ∈ (–∞; –1/2) ∪ (0; 1) ∪ (4/3; +∞)
f(x) = 0 ⇔ x ∈ {–1/2; 0; 1; 4/3}
f(x) < 0 ⇔ x ∈ (–1/2; 0) ∪ (1; 4/3)
c) f(x) = (4x2 – 1)(–8x2 + x – 3)(2x + 9)
+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số a = 4 > 0
Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang dấu – nếu –1/2 < x < 1/2
+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên luôn mang dấu –.
+ Nhị thức 2x + 9 có nghiệm x = –9/2.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 khi x ∈ (–∞; –9/2) ∪ (–1/2; 1/2)
f(x) = 0 khi x ∈ {–9/2; –1/2; 1/2}
f(x) < 0 khi x ∈ (–9/2; –1/2) ∪ (1/2; +∞)
+ Tam thức 3x2 – x có hai nghiệm x = 0 và x = 1/3, hệ số a = 3 > 0.
Do đó 3x2 – x mang dấu + khi x < 0 hoặc x > 1/3 và mang dấu – khi 0 < x < 1/3.
+ Tam thức 3 – x2 có hai nghiệm x = √3 và x = –√3, hệ số a = –1 < 0
Do đó 3 – x2 mang dấu – khi x < –√3 hoặc x > √3 và mang dấu + khi –√3 < x < √3.
+ Tam thức 4x2 + x – 3 có hai nghiệm x = –1 và x = 3/4, hệ số a = 4 > 0.
Do đó 4x2 + x – 3 mang dấu + khi x < –1 hoặc x > 3/4 và mang dấu – khi –1 < x < 3/4.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 ⇔ x ∈ (–√3; –1) ∪ (0; 1/3) ∪ (3/4; √3)
f(x) = 0 ⇔ x ∈ {±√3; 0; 1/3}
f(x) < 0 ⇔ x ∈ (–∞; –√3) ∪ (–1; 0) ∪ (1/3; 3/4) ∪ (√3; +∞)
f(x) không xác định khi x = -1 và x = 3/4.
Giải bài 3 SGK Toán lớp 10 tập 1 trang 105
Giải các bất phương trình sau
a) 4x2 - x + 1 < 0
b) -3x2 + x + 4 ≥ 0
c)
d) x2 - x - 6 ≤ 0
Lời giải
a) 4x2 - x + 1 < 0
Cách 1:
Xét tam thức f(x) = 4x2 - x + 1 có Δ = -15 < 0; a = 4 > 0 nên f(x) > 0 ∀x ∈ R
Vậy bất phương trình đã cho vô nghiệm.
Cách 2:
với ∀x ∈ R.
Vậy bất phương trình 4x2 – x + 1 < 0 vô nghiệm.
b) -3x2 + x + 4 ≥ 0
Xét tam thức f(x) = -3x2 + x + 4 có hai nghiệm x = -1 và x = 4/3, hệ số a = -3 < 0.
Do đó f(x) ≥ 0 khi -1 ≤ x ≤ 4/3.
Vậy tập nghiệm của bất phương trình là: T = [-1; 4/3]
c) Điều kiện xác định
+ Nhị thức x + 8 có nghiệm x = -8
+ Tam thức x2 – 4 có hai nghiệm x = 2 và x = -2, hệ số a = 1 > 0
Do đó x2 – 4 mang dấu + khi x < -2 hoặc x > 2 và mang dấu – khi -2 < x < 2.
+ Tam thức 3x2 + x – 4 có hai nghiệm x = 1 và x = -4/3, hệ số a = 3 > 0.
Do đó 3x2 + x – 4 mang dấu + khi x < -4/3 hoặc x > 1
mang dấu – khi -4/3 < x < 1.
Ta có bảng biến thiên
Dựa vào BBT ta thấy
Vậy tập nghiệm của bất phương trình là: T = (-∞; -8) ∪ (-2; -4/3) ∪ (1; 2)
d) x2 - x - 6 ≤ 0
Xét tam thức f(x) = x2 - x - 6 có hai nghiệm x = -2 và x = 3, hệ số a = 1 > 0
Do đó f(x) ≤ 0 khi -2 ≤ x ≤ 3.
Vậy tập nghiệm của bất phương trình là: T = [-2; 3]
Giải SGK Toán lớp 10 tập 1 bài 4 trang 105
Tìm các giá trị của tham số m để các phương trình sau vô nghiệm
a) (m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0
b) (3 - m)x2 - 2(m + 3)x + m + 2 = 0
Lời giải
a) (m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0 (1)
- Nếu m - 2 = 0 ⇔ m = 2, khi đó phương trình (1) trở thành:
2x + 4 = 0 ⇔ x = -2 hay phương trình (1) có một nghiệm
Do đó m = 2 không phải là giá trị cần tìm.
- Nếu m - 2 ≠ 0 ⇔ m ≠ 2 ta có:
Δ' = (2m - 3)2 - (m - 2)(5m - 6)
= 4m2 - 12m + 9 - 5m2 + 6m + 10m - 12
= -m2 + 4m - 3 = (-m + 3)(m - 1)
(1) vô nghiệm ⇔ Δ' < 0 ⇔ (-m + 3)(m - 1) < 0 ⇔ m ∈ (-∞; 1) ∪ (3; +∞)
Vậy với m ∈ (-∞; 1) ∪ (3; +∞) thì phương trình vô nghiệm.
b) (3 - m)x2 - 2(m + 3)x + m + 2 = 0 (2)
- Nếu 3 - m = 0 ⇔ m = 3 khi đó (2) trở thành -12x + 5 = 0 ⇔ x = 5/12
Do đó m = 3 không phải là giá trị cần tìm.
- Nếu 3 - m ≠ 0 ⇔ m ≠ 3 ta có:
Δ' = (m + 3)2 - (3 - m)(m + 2)
= m2 + 6m + 9 - 3m - 6 + m2 + 2m
= 2m2 + 5m + 3 = (m + 1)(2m + 3)
(2) vô nghiệm ⇔Δ' < 0⇔ (m + 1)(2m + 3) < 0 ⇔ m ∈ (-3/2; -1)
Vậy với m ∈ (-3/2; -1) thì phương trình vô nghiệm.
CLICK NGAY vào nút TẢI VỀ dưới đây để giải toán lớp 10 SGK trang 105 file word, pdf hoàn toàn miễn phí
Từ khóa » Bài Tập 2 Toán 10 Trang 105
-
Giải Bài 2 Trang 105 SGK Đại Số 10
-
Bài 2 Trang 105 SGK Đại Số 10 | SGK Toán Lớp 10
-
Giải Bài 2 Trang 105 – SGK Môn Đại Số Lớp 10 - Chữa Bài Tập
-
Giải Toán 10: Bài 2 Trang 105 SGK Đại Số 10 - TopLoigiai
-
Giải Bài Tập Trang 105 SGK Đại Số 10 Bài 1, 2, 3, 4 - Dấu Của Tam Thức
-
Giải Bài 1,2,3,4 Trang 105 Đại Số Lớp 10: Dấu Của Tam Thức Bậc Hai
-
Bài 2 Trang 105 SGK Đại Số 10 | Giải Bài Tập Toán 10 - MarvelVietnam
-
Bài 2 Trang 105 SGK Đại Số 10: Bài 5. Dấu Của Tam Thức Bậc Hai
-
Giải Bài 1, 2, 3, 4 Trang 105 Sách Giáo Khoa Đại Số 10
-
Bài 2 Trang 105 SGK Đại Số 10 - Môn Toán - Tìm đáp án, Giải Bài Tập,
-
Giải Bài Tập Sgk Toán 10 đại Số Bài 2 Trang 105 - VOH
-
Hướng Dẫn Giải Bài 1 2 3 4 Trang 105 Sgk Đại Số 10
-
Giải Câu 2 Bài 5: Dấu Của Tam Thức Bậc Hai Sgk Đại Số 10 Trang 105