Cách Tìm Cực Trị Của Hàm Chứa Dấu Giá Trị Tuyệt đối Cực Hay, Có Lời Giải

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải - Toán lớp 12 ❮ Bài trước Bài sau ❯

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Với Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập tìm cực trị của hàm chứa dấu giá trị tuyệt đối từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

A. Phương pháp giải

a. Hàm số y = |f(x)|

Để tìm cực trị của hàm số y = |f(x)| ta sẽ lập bảng bảng thiên hoặc vẽ đồ thị hàm số y = |f(x)| từ đồ thị hay bảng biến thiên của hàm y = f(x) .

Chú ý: - Đồ thị hàm số y = |f(x)| gồm 2 phần:

+ Phần đồ thị y = f(x) nằm trên Ox

+ Phần đồ thị lấy đối xứng qua Ox của đồ thị y = f(x) nằm dưới Ox

- Số điểm cực trị của hàm số y = |f(x)| bằng tổng số điểm cực trị của hàm số y = f(x) và số nghiệm bội lẻ của phương trình f(x) = 0

b. Hàm số y = f(|x|)

Để tìm cực trị của hàm số y = f(|x|) ta sẽ lập bảng bảng thiên hoặc vẽ đồ thị hàm số y = f(|x|) từ đồ thị hay bảng biến thiên của hàm y = f(x) .

Chú ý: - Đồ thị hàm số y = f(|x|) gồm 2 phần:

+ Phần đồ thị y = f(x) nằm bên phải trục Oy (C1)

+ Phần lấy đối xứng (C1) qua Oy

- Số điểm cực trị của hàm số y = f(|x|) bằng 2 lần số điểm cực trị dương của hàm số y = f(x) và cộng thêm 1.

B. Ví dụ minh họa

Ví dụ 1: Cho hàm số y = f(x) có đồ thị (C) như hình vẽ bên. Hàm số y = f(|x|) có bao nhiêu điểm cực trị?

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

A. 3.

B. 4.

C. 5.

D. 6.

Lời giải

Chọn C

Đồ thị(C') của hàm số y = f(|x|) được vẽ như sau.

+ Giữ nguyên phần đồ thị của(C) nằm bên phải trục tung ta được (C1)

+ Lấy đối xứng qua trục tung phần đồ thị của (C1) ta được(C2)

+ Khi đó (C') = (C1)∪(C2) có đồ thị như hình vẽ dưới

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Từ đồ thị (C') ta thấy hàm số y = f(|x|) có 5 điểm cực trị.

Ví dụ 2: Cho hàm số y = f(x) có bảng biến thiên như sau. Đồ thị hàm số y = |f(x)| có bao nhiêu điểm cực trị?

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

A. 5.

B. 6.

C. 3.

D. 7.

Lời giải

Chọn D

Đồ thị hàm y = |f(x)| gồm 2 phần.

+ Phần đồ thị y = f(x) nằm trên Ox

+ Phần đồ thị lấy đối xứng qua Ox của đồ thị y = f(x) nằm dưới Ox

Đồ thị hàm số y = f(x) giao với trục Ox tại các điểm có hoành độ x1; x2; x3; x4

Từ đó ta có bảng biến thiên của y = |f(x)|

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Từ bảng biến thiên này hàm số y = |f(x)| có 7 điểm cực trị.

Ví dụ 3: Cho hàm số y = |(x - 1)(x - 2)2|. Số điểm cực trị của hàm số là:

A. 1.

B. 2.

C. 3.

D. 4.

Lời giải

Chọn C

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Mặt khác phương trình f(x) = (x - 1)(x - 2)2 = 0 có 1 nghiệm đơn x = 1

Ta có số điểm cực trị của hàm số y = |(x - 1)(x - 2)2| là tổng số điểm cực trị của hàm số f(x) = (x - 1)(x - 2)2 và số nghiệm bội lẻ của phương trình f(x) = 0.

Vậy số điểm cực trị của hàm số y = |(x - 1)(x - 2)2| là 3

C. Bài tập trắc nghiệm

Bài 1: Cho hàm số Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải, số điểm cực trị của hàm số y = f(|x|) là

A. 2.

B. 3.

C. 4.

D. 5.

Lời giải:

Chọn B

Số điểm cực trị dương của hàm số y = f(x) là n thì số điểm cực trị của hàm số y = f(|x|) là 2n + 1

Ta có f'(x) = x3 + x2 - 2x = x(x - 1)(x + 2)

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Hàm số y = f(x) có một điểm cực trị dương nên hàm số y = f(|x|) có 3 điểm cực trị.

Bài 2: Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 2)4 (x2+8). Số điểm cực trị của hàm số y = f(|x|) là:

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải:

Chọn B

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Do f'(x)chỉ đổi dấu khi đi qua điểm x = 0 nên hàm số f(x) có 1 điểm cực trị x = 0.

Số điểm cực trị dương của hàm số y = f(x) là n thì số điểm cực trị của hàm số y = f(|x|) là 2n + 1

Do đó hàm y = f(|x|) có duy nhất 1 điểm cực trị.

Bài 3: Cho hàm số y = f(x) có bảng biến thiên như sau.

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Hàm số y = f(|x-3|) có bao nhiêu điểm cực trị?

A. 5

B. 6

C. 3

D. 1

Lời giải:

Chọn C

Đồ thị hàm số y = f(|x - 3|) được suy ra từ đồ thị hàm số y = f(x) bằng cách ta suy ra đồ thị hàm y = f(|x|) rồi tịnh tiến đồ thị hàm số y = f(|x|) sang phải 3 đơn vị.

Ta có bảng biến thiên của hàm số y = f(|x|) như sau.

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Từ bảng biến thiên ta thấy hàm số y = f(|x|) có ba điểm cực trị nên khi tịnh tiến đồ thị y = f(|x|) sang phải 3 đơn vị ta được hàm số y = f(|x - 3|) cũng có ba điểm cực trị.

Bài 4: Cho hàm số y = f(x) có bảng biến thiên như sau.

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Hàm số y = f(|x|) có các điểm cực tiểu là:

A. x = 3.

B. x = 0.

C. x = ±4.

D. x = 2.

Lời giải:

Chọn C

Ta có Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải nên bảng biến thiên của hàm số là y = f(|x|).

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Suy ra hàm số y = f(|x|) đạt cực tiểu tại x = ±4

Bài 5: Cho hàm số y = f(x) có đạo hàm f'(x) = (x3 - 2x2)(x3 - 2x). Hàm số y = |f(x)| có nhiều nhất bao nhiêu điểm cực trị?

A. 9.

B. 8.

C. 7.

D. 6.

Lời giải:

Chọn A

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Từ bảng biến thiên ta thấy hàm số y = f(x) có 4 điểm cực trị, suy ra f(x) = 0 có tối đa 5 nghiệm phân biệt.

Do đó hàm số y = |f(x)| có tối đa 4 + 5 = 9 điểm cực trị.

Bài 6: Cho hàm số y = f(x) xác định và liên tục trên R, có bảng xét dấu của f'(x) như sau

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Số điểm cực trị của đồ thị hàm số y = f(|x - 2|) + 2020 là:

A. 5.

B. 4.

C. 0.

D. 3.

Lời giải:

Chọn A

Xét hàm số Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải.

Khi đó ta có bảng xét dấu của hàm số y = f(|x|) như sau

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Suy ra đồ thị hàm số y = f(|x|) có 5 điểm cực trị.

Suy ra đồ thị hàm số y = f(|x - 2|) có 5 cực trị (Tịnh tiến đồ thị hàm số y = f(|x|) sang phải 2 đơn vị thì số điểm cực trị không thay đổi).

Suy ra đồ thị hàm số y = f(|x - 2|) + 2020 có 5 cực trị (Tịnh tiến đồ thị hàm số y = f(|x - 2|) lên trên 2020 đơn vị thì số điểm cực trị không thay đổi).

Bài 7: Cho hàm số y = f(x) có đồ thị hàm số như hình vẽ. Hỏi có tất cả bao nhiêu giá trị m nguyên để hàm số y = |f(x) + 2m - 1| có 5 điểm cực trị.

A. 2.

B. 3.

C. 4.

D. 5.

Lời giải:

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Ta có hàm số y = f(x) có 2 điểm cực trị nên hàm số y = f(x) + 2m - 1 có 2 điểm cực trị.

Hàm số y = |f(x) + 2m - 1| có 5 điểm cực trị ⇒ f(x) + 2m - 1 = 0 có 3 nghiệm phân biệt.

Để phương trình f(x) + 2m - 1 = 0 có 3 nghiệm phân biệt thì đường thẳng y = -2m + 1 cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Vậy hàm số y = |f(x) + 2m - 1| có 5 điểm cực trị thì Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải. Vì m ∈ Z nên m ∈ {0,1}.

Bài 8: Cho hàm số y = f(x) có đạo hàm f'(x) = (x3 - 2x2)(x3 - 2x), với mọi x ∈ R. Hàm số y = |f(1 - 2018x)| có nhiều nhất bao nhiêu điểm cực trị.

A. 9.

B. 2022.

C. 11.

D. 2018.

Lời giải:

Chọn A

Ta có f'(x) = x3(x - 2)(x2 - 2). Cho Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải.

Bảng biến thiên

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Suy ra hàm số y = f(x) có 4 điểm cực trị.

Và phương trình f(x) = 0 có tối đa 5 nghiệm.

Do đó hàm số y = |f(x)| có tối đa 9 điểm cực trị.

Mà hàm số y = |f(x)| và hàm số y = |f(1 - 2018x)| có cùng số điểm cực trị.

Suy ra hàm số y = |f(1 - 2018x)| có tối đa 9 điểm cực trị.

Bài 9: Cho hàm số y = f(x) xác định và liên tục trên R, có f'(x) = x2 - 1. Hàm số f(|x2 - 2|) có bao nhiêu điểm cực tiểu ?

A. 2.

B. 5.

C. 7.

B. 4.

Lời giải:

Chọn D

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Bảng biến thiên:

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Nhìn vào bảng biến thiên thì g(x) có hai điểm cực tiểu x ≥ 0. Do đó hàm f(|x2-2|) sẽ có 4 cực tiểu.

Bài 10: Tổng các giá trị nguyên của tham số m để hàm số Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải có 5 điểm cực trị là

A. 2016.

B. 1952.

C. -2016.

D. -496.

Lời giải:

Chọn A

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Để thỏa yêu cầu thì đồ thị (C): y = f(x) cắt trục hoành tại 3 điểm phân biệt:

Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải. Mà m ∈ Z nên m ∈ {1;2;3;...;63}.

Tổng các giá trị nguyên m là: Cách tìm cực trị của hàm chứa dấu giá trị tuyệt đối cực hay, có lời giải

Từ khóa » Tịnh Tiến đồ Thị Trị Tuyệt đối