Cách Tính Giới Hạn Của Hàm Số Lượng Giác Cực Hay, Chi Tiết

Cách tính giới hạn của hàm số lượng giác (cực hay, chi tiết)
  • Sổ tay toán lý hóa 12 chỉ từ 29k/cuốn
Trang trước Trang sau

Bài viết Cách tính giới hạn của hàm số lượng giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tính giới hạn của hàm số lượng giác.

  • Cách giải bài tập tính giới hạn của hàm số lượng giác
  • Ví dụ minh họa bài tập tính giới hạn của hàm số lượng giác
  • Bài tập tự luyện tính giới hạn của hàm số lượng giác

Cách tính giới hạn của hàm số lượng giác (cực hay, chi tiết)

A. Phương pháp giải

- Áp dụng giới hạn đặc biệt: Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

- Các bước tìm giới hạn hàm số lượng giác Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết với f(x) là hàm số lượng giác

● Bước 1: Sử dụng các công thức lượng giác cơ bản, công thức nhân đôi, công thức cộng, công thức biến đổi,… (đã được học ở chương 6 Đại số 10) để biến đổi hàm số lượng giác f(x) về cùng dạng giới hạn đặc biệt nêu trên.

● Bước 2: Áp dụng các định lý về giới hạn để tìm giới hạn đã cho.

B. Ví dụ minh họa

Ví dụ 1: Cho a và b là hai số thực khác 0. Khi đó Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết bằng:

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Hướng dẫn giải:

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Đáp án C

Ví dụ 2: Tính các giới hạn sau:

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Hướng dẫn giải:

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Ví dụ 3: Tính các giới hạn sau (với a là số thực khác 0)

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Hướng dẫn giải:

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

(áp dụng công thức cộng: sin(a-b) = sina.cosb-cosa.sinb)

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

Cách tính giới hạn của hàm số lượng giác cực hay, chi tiết

C. Bài tập tự luyện

Bài 1. Tìm các giới hạn sau:

a) limx→0sin5xx;                          b) limx→0tan2x3x.

Bài 2. Tìm các giới hạn sau:

a) limx→01−cosxsinx;                       b) limx→0sin5x.sin3x.sin45x3.

Bài 3. Tìm các giới hạn sau:

a) L=limx→0x.sinax1−cosax;               b) limx→01−cos22xx.sinx.

Bài 4. Tính giới hạn: limx→0cosa+x−cosa−xx.

Bài 5. Tính giới hạn: limx→02x+1−x2+13sinx.

Bài 6. Tính giới hạn: limx→0sinx−sin2xx1−2sin2x2.

Bài 7. Tính giới hạn: limx→π4tan2x.tanπ4−x.

Bài 8. Tính giới hạn: limx→π1+cosxx−π2.

Bài 9. Tính giới hạn: limx→π6sinπ6−x1−2sinx.

Bài 10. Tính giới hạn: limx→π3sinx−3cosxsin3x.

  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau Giải bài tập lớp 11 sách mới các môn học
  • Giải Tiếng Anh 11 Global Success
  • Giải sgk Tiếng Anh 11 Smart World
  • Giải sgk Tiếng Anh 11 Friends Global
  • Lớp 11 - Kết nối tri thức
  • Soạn văn 11 (hay nhất) - KNTT
  • Soạn văn 11 (ngắn nhất) - KNTT
  • Giải sgk Toán 11 - KNTT
  • Giải sgk Vật Lí 11 - KNTT
  • Giải sgk Hóa học 11 - KNTT
  • Giải sgk Sinh học 11 - KNTT
  • Giải sgk Lịch Sử 11 - KNTT
  • Giải sgk Địa Lí 11 - KNTT
  • Giải sgk Giáo dục KTPL 11 - KNTT
  • Giải sgk Tin học 11 - KNTT
  • Giải sgk Công nghệ 11 - KNTT
  • Giải sgk Hoạt động trải nghiệm 11 - KNTT
  • Giải sgk Giáo dục quốc phòng 11 - KNTT
  • Giải sgk Âm nhạc 11 - KNTT
  • Lớp 11 - Chân trời sáng tạo
  • Soạn văn 11 (hay nhất) - CTST
  • Soạn văn 11 (ngắn nhất) - CTST
  • Giải sgk Toán 11 - CTST
  • Giải sgk Vật Lí 11 - CTST
  • Giải sgk Hóa học 11 - CTST
  • Giải sgk Sinh học 11 - CTST
  • Giải sgk Lịch Sử 11 - CTST
  • Giải sgk Địa Lí 11 - CTST
  • Giải sgk Giáo dục KTPL 11 - CTST
  • Giải sgk Hoạt động trải nghiệm 11 - CTST
  • Giải sgk Âm nhạc 11 - CTST
  • Lớp 11 - Cánh diều
  • Soạn văn 11 Cánh diều (hay nhất)
  • Soạn văn 11 Cánh diều (ngắn nhất)
  • Giải sgk Toán 11 - Cánh diều
  • Giải sgk Vật Lí 11 - Cánh diều
  • Giải sgk Hóa học 11 - Cánh diều
  • Giải sgk Sinh học 11 - Cánh diều
  • Giải sgk Lịch Sử 11 - Cánh diều
  • Giải sgk Địa Lí 11 - Cánh diều
  • Giải sgk Giáo dục KTPL 11 - Cánh diều
  • Giải sgk Tin học 11 - Cánh diều
  • Giải sgk Công nghệ 11 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 11 - Cánh diều
  • Giải sgk Âm nhạc 11 - Cánh diều

Từ khóa » Giới Hạn Hàm Số Lượng Giác Nâng Cao