Cho A+b+c =1 .cmr: A2+b2+c2 >= 1/3 - Olm

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

Chính thức mở đề thi thử tốt nghiệp THPT trên máy tính từ 27/12/2025, xem ngay.

OLM Class tuyển sinh lớp bứt phá học kỳ II! Đăng ký ngay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
HM hyun mau 3 tháng 4 2015 - olm

cho a+b+c =1 .cmr: a2+b2+c2 >= 1/3

#Hỏi cộng đồng OLM #Toán lớp 8 1 TT Trần Thị Loan 3 tháng 4 2015

a2 + b2 + c2 \(\ge\frac{1}{3}\)\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge1\)\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow3.a^2+3.b^2+3.c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow2.a^2+2.b^2+2.c^2\ge2ab+2bc+2ac\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

luôn đúng

=> đẳng thức đầu đúng => đpcm

Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên TN Trung Nguyen 10 tháng 12 2017 - olm

Cho a;b;c>0; a+b+c=1.CMR:

a2+b2+c2>=3(a2b+b2c+c2a)

#Hỏi cộng đồng OLM #Toán lớp 8 0 AS Alice Sophia 22 tháng 5 2017

cho a và b là các sô thực dương. CMR

a3/(a2+b2)+b3/(b2+1)+1/(a2+1)>=(a+b+1)/2

#Hỏi cộng đồng OLM #Toán lớp 8 1 NT nguyen tuan duc 22 tháng 5 2017

nhận thấy nếu áp dụng bất đẳng thức như bình thường thì ta sẽ bị ngược dấu, do đó ta dùng kỹ thuật cauchy ngược dấu

ta có:

\(\dfrac{a^3}{a^2+b^2}\)=a-\(\dfrac{a.b^2}{a^2+b^2}\)\(\ge\)a-\(\dfrac{a.b^2}{2ab}\)=a-\(\dfrac{b}{2}\)

\(\dfrac{b^3}{b^2+1}\)=b-\(\dfrac{b}{b^2+1}\)\(\ge\)b-\(\dfrac{b}{2b}\)=b-\(\dfrac{1}{2}\)

\(\dfrac{1}{a^2+1}\)=1-\(\dfrac{a^2}{a^2 +1}\)\(\ge\)1-\(\dfrac{a^2}{2a}\)=1-\(\dfrac{a}{2}\)

cộng từng vế của bất đẳng thức lại với nhau ta được:

\(\dfrac{a^3}{a^2+b^2}\)+\(\dfrac{b^3}{b^2+1}\)+\(\dfrac{1}{a^2+1}\)\(\ge\)a-\(\dfrac{b}{2}\)+b-\(\dfrac{1}{2}\)+1-\(\dfrac{a}{2}\)=\(\dfrac{a+b+1}{2}\)

Đúng(0) ND Nguyễn Duy Long 15 tháng 12 2016 - olm Em da quay tro lai voi nhung bai toan kho day. Mong moi nguoi giup nhe:1/ Cho x,y >0 va x+y=2. CMR: x3y3(x3+y3) \(\le\)22/ Cho a,b,c>0 va a+b+c=1CMR \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge3\left(a^2+b^2+c^2\right)\)3/ Cho a,b,c>0 va a+b+c=1CMR 4(a3+b3+c3-3abc)\(\ge\)3(a-b)2Xin chac chan rang de chep dung...Đọc tiếp

Em da quay tro lai voi nhung bai toan kho day. Mong moi nguoi giup nhe:

1/ Cho x,y >0 va x+y=2. CMR: x3y3(x3+y3) \(\le\)2

2/ Cho a,b,c>0 va a+b+c=1

CMR \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge3\left(a^2+b^2+c^2\right)\)

3/ Cho a,b,c>0 va a+b+c=1

CMR 4(a3+b3+c3-3abc)\(\ge\)3(a-b)2

Xin chac chan rang de chep dung 100%

#Hỏi cộng đồng OLM #Toán lớp 8 2 PH Phạm Hải Băng 15 tháng 12 2016

one piece

Đúng(0) ND Nguyễn Duy Long 18 tháng 12 2016

Em mong cac ban giup cau 2 thoi cung duoc a

Đúng(0) Xem thêm câu trả lời TP thành piccolo 2 tháng 8 2015 - olm

cmr :1, a/(b+c) +b/(c+a)=c/(a+b) =< 3/2

       2, a,b,c>0 .Cmr: a2/b +b2/c + c2/a > a+b+c

#Hỏi cộng đồng OLM #Toán lớp 8 0 TP thành piccolo 2 tháng 8 2015 - olm

cmr :1, a/(b+c) +b/(c+a)=c/(a+b) =< 3/2

       2, a,b,c>0 .Cmr: a2/b +b2/c + c2/a > a+b+c

#Hỏi cộng đồng OLM #Toán lớp 8 0 PD Phi DU 27 tháng 2 2017

1) cho a+b>. CMR: a4 +b4>\(\dfrac{\text{1}}{8}\)

2) Cho a,b,c là độ dài ba canh của tam giác. CMR:

\(\dfrac{\text{1}}{a+b-c}+\dfrac{\text{1}}{b+c-a}+\dfrac{\text{1}}{a+c-b}>=\dfrac{\text{1}}{a}+\dfrac{\text{1}}{b}+\dfrac{\text{1}}{c}\)

3) a2+b2 <= 2. CMR: a+b <= 2

#Hỏi cộng đồng OLM #Toán lớp 8 4 KK Kuro Kazuya 27 tháng 2 2017

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

Đúng(0) LF Lightning Farron 27 tháng 2 2017

câu 1: a+b>?

Đúng(0) Xem thêm câu trả lời HT Hoàng Thu Thủy 9 tháng 3 2018 - olm Bài 1: CMR1, a2+b2+c2 >= ab+bc+ca2, a4+b4+c4+d4 >= 4abcd3, a3+b3+abc >= ab(a+b+c) với a,b,c>04, 8(a4+b4) >= (a+b)45, (a2+b2) >= ab(a+b)26, a2+b2+c2+d2 >= a(b+c+d)7, x4-4x+5 > 08, x4-x+1/2 > 09, a2+b2+c2+3/4 >= a+b+c10, a4+b4+2 >= 4ab\(\frac{ }{...Đọc tiếp

Bài 1: CMR

1, a2+b2+c2 >= ab+bc+ca

2, a4+b4+c4+d4 >= 4abcd

3, a3+b3+abc >= ab(a+b+c) với a,b,c>0

4, 8(a4+b4) >= (a+b)4

5, (a2+b2) >= ab(a+b)2

6, a2+b2+c2+d2 >= a(b+c+d)

7, x4-4x+5 > 0

8, x4-x+1/2 > 0

9, a2+b2+c2+3/4 >= a+b+c

10, a4+b4+2 >= 4ab

\(\frac{ }{ }\)

#Hỏi cộng đồng OLM #Toán lớp 8 0 NH Nguyễn Hải Đăng 1 tháng 5 2017 - olm

Cho abc=1 và a3>36. CMR: a2>3(ab+ac+bc-b2-c2)

#Hỏi cộng đồng OLM #Toán lớp 8 0 MH miko hậu đậu 5 tháng 4 2015 - olm

CMR: Với 3 số a,b,c tùy ý ta có :

Câu 1: a2  + b2 +1 >= ab + a+ b

Câu 2: a2 + b2 + c2 +3 >=2 (a+b+c)

#Hỏi cộng đồng OLM #Toán lớp 8 2 PT pham thi thanh hue 6 tháng 4 2015

cau 2

a^2 +b^2+c^2 +3>=2(a+b+c)

<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0

<=>(a-1)^2+(b-1)^2+(c-1)^2>=0    (luon đúng)

vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)

Đúng(0) PT pham thi thanh hue 6 tháng 4 2015

cau 1

a^2 +b^2 +1>= ab +a +b   (H)

<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0   (nhân cả 2 vế với 2 đồng thời chuyển vế)

<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0

<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0    (luon dung)

=>H luôn đung

Đúng(0) Xem thêm câu trả lời Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • P Phượng2K13 2 GP
  • PT Phạm Thị Minh Phương 2 GP
  • MN Mai Ngọc Phong 2 GP
  • PD Phạm Duy Kiên 2 GP
  • HN Hiền Nguyễn Thị 2 GP
  • NT Nguyễn Thị Minh Hằng 2 GP
  • TT Trần Thị Hồng Giang 0 GP
  • NV Nguyễn Vũ Thu Hương 0 GP
  • HA Hải Anh ^_^ 0 GP
  • VD vu duc anh 0 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Cho A+b+c=1 Chung Minh A2+b2+c2 =1/3