Cho Dãy Số (un), Biết U1= 2, Un 1= \(\dfrac{2017 U_n}{2019 ... - Olm
Có thể bạn quan tâm
- Học bài
- Hỏi bài
- Kiểm tra
- ĐGNL
- Thi đấu
- Thư viện số
- Bài viết Cuộc thi Tin tức Blog học tập
- Trợ giúp
- Về OLM
(Từ ngày 12/12) Lớp live ôn thi cuối kỳ I hoàn toàn miễn phí - Tham gia ngay!!!
Mở bộ đề mới - nhận quà VIP liền tay
- Mẫu giáo
- Lớp 1
- Lớp 2
- Lớp 3
- Lớp 4
- Lớp 5
- Lớp 6
- Lớp 7
- Lớp 8
- Lớp 9
- Lớp 10
- Lớp 11
- Lớp 12
- ĐH - CĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác nhận câu hỏi phù hợpChọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
- Tất cả
- Mới nhất
- Câu hỏi hay
- Chưa trả lời
- Câu hỏi vip
Cho dãy số (un), biết u1= 2, un+1= \(\dfrac{2017+u_n}{2019-u_n},n\ge1\) . Xác định công thức số hạng tổng quát un và tìm limun
#Hỏi cộng đồng OLM #Toán lớp 11 1
NV Nguyễn Việt Lâm 29 tháng 3 2021 Đặt \(u_n=v_n+1\Rightarrow v_{n+1}+1=\dfrac{2017+v_n+1}{2019-\left(v_n+1\right)}=\dfrac{2018+v_n}{2018-v_n}\)
\(\Rightarrow v_{n+1}=\dfrac{2018+v_n}{2018-v_n}-1=\dfrac{2v_n}{2018-v_n}\Rightarrow\dfrac{1}{v_{n+1}}=1009\dfrac{1}{v_n}-\dfrac{1}{2}\)
Đặt \(\dfrac{1}{v_n}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{v_1}=\dfrac{1}{u_1-1}=1\\x_{n+1}=1009x_n-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x_{n+1}-\dfrac{1}{2016}=1009\left(x_n-\dfrac{1}{2016}\right)\)
\(\Rightarrow x_n-\dfrac{1}{2016}\) là CSN với công bội 1009 \(\Rightarrow x_n-\dfrac{1}{2016}=\dfrac{2015}{2016}.1009^{n-1}\)
\(\Rightarrow x_n=\dfrac{2015}{2016}1009^{n-1}+\dfrac{1}{2016}\)
\(\Rightarrow u_n=v_n+1=\dfrac{1}{x_n}+1=\dfrac{2016}{2015.1009^{n-1}+1}+1\)
\(\Rightarrow\lim\left(u_n\right)=1\)
Đúng(2) TT Trần Thanh Phương 29 tháng 3 2021Có thể đặt \(u_n=v_n+2017\) nữa bác nhỉ, bác có công thức tổng quát tìm t không ạ: \(u_n=v_n+t\).
Đúng(0) Những câu hỏi liên quan TP Trinh Phương 8 tháng 2 2022 Cho dãy số (un) thỏa mãn u1 = \(\dfrac{2}{3}\) và un+1 = \(\dfrac{u_n}{2\left(2n+1\right)u_n+1}\left(n\ge1\right)\). Tìm số hạng tổng quát un của dãy. Tính lim...Đọc tiếpCho dãy số (un) thỏa mãn u1 = \(\dfrac{2}{3}\) và un+1 = \(\dfrac{u_n}{2\left(2n+1\right)u_n+1}\left(n\ge1\right)\). Tìm số hạng tổng quát un của dãy. Tính lim un
#Hỏi cộng đồng OLM #Toán lớp 11 1
C ☆Châuuu~~~(๑╹ω╹๑ )☆ 8 tháng 2 2022 
Ủa lớp 9 học lim rồi á?
Đúng(0) KH Kimian Hajan Ruventaren 22 tháng 12 2021Cho dãy số (un) biết u1 = 3; \(u_{n+1}=\sqrt{1+u_n^2}\) với \(n\ge1\). Tìm công thức của số hạng tổng quát un
#Hỏi cộng đồng OLM #Toán lớp 11 1
LT Lê Thị Thục Hiền 23 tháng 12 2021 \(u_{n+1}=\sqrt{1+u_n^2}\left(1\right)\)
\(u_1=3=\sqrt{9}\)
\(u_2=\sqrt{1+u_1^2}=\sqrt{10}\)
\(u_3=\sqrt{1+u_2^2}=\sqrt{11}\)
...
Dự đoán công thức:\(u_n=\sqrt{n+8}\),\(n\ge1\) (*)
Thật vậy
+)\(n=1,(*)\)\(\Leftrightarrow u_1=3\) (lđ)
+)Giả sử (*) đúng với mọi \(n=k,k>1\)
\((*)\Leftrightarrow u_k=\sqrt{k+8}\)
+)\(n=k+1,\) thay vào (1) có: \(u_{k+2}=\sqrt{1+u^2_{k+1}}=\sqrt{1+\left(\sqrt{1+u_k^2}\right)^2}=\sqrt{2+u^2_k}=\sqrt{2+k+8}=\sqrt{10+k}\)
\(\Rightarrow\)(*) đúng với n=k+1
Vậy CTSHTQ: \(u_n=\sqrt{n+8}\), \(n\ge1\)
Đúng(0) LT Lê Thu Hiền 9 tháng 8 2021Cho dãy số (un) xác định bởi : u1=1 ,\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{n^2+3n+2}\right)\)
Tìm công thức số hạng tổng quát un theo n
#Hỏi cộng đồng OLM #Toán lớp 11 1
NV Nguyễn Việt Lâm 9 tháng 8 2021 \(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}+\dfrac{2}{n+2}\right)\)
\(\Leftrightarrow u_{n+1}-\dfrac{3}{n+1+1}=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}\right)\)
Đặt \(u_n-\dfrac{3}{n+1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{3}{2}=-\dfrac{1}{2}\\v_{n+1}=\dfrac{3}{2}v_n\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội \(\dfrac{3}{2}\)
\(\Rightarrow v_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}\)
\(\Rightarrow u_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}+\dfrac{3}{n+1}\)
Đúng(2) BC Big City Boy 4 tháng 12 2023Cho dãy số (Un) xác định bởi:\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=-\dfrac{3}{2}u_n^2+\dfrac{5}{2}u_n+1\end{matrix}\right.\), \(\forall n\ge1\)
1) Hãy tính u2.u3,u4,u5
2) Dự đoán công thức của số hạng tổng quát Un
#Hỏi cộng đồng OLM #Toán lớp 11 0
NN Ngọc Nhã Uyên Hạ 19 tháng 1 2021 Cho dãy số (Un) được xác định bởi: u1 = \(\dfrac{1}{3}\) và un+1 = \(\dfrac{2u_n}{2u_n\left(3n-1\right)+1}\), ∀n ∈ N*.a) Tìm u4 và số hạng tổng quát un của dãy số.b) Tính S = \(\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\) (tổng gồm n số hạng) theo n.Help me!!!Gấp lắm ạThank you so...Đọc tiếpCho dãy số (Un) được xác định bởi: u1 = \(\dfrac{1}{3}\) và un+1 = \(\dfrac{2u_n}{2u_n\left(3n-1\right)+1}\), ∀n ∈ N*.
a) Tìm u4 và số hạng tổng quát un của dãy số.
b) Tính S = \(\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\) (tổng gồm n số hạng) theo n.
Help me!!!
Gấp lắm ạ
Thank you so much!!!
#Hỏi cộng đồng OLM #Toán lớp 11 0
BC Big City Boy 27 tháng 11 2023 Cho dãy số (Un) xác định bởi công thức truy hồi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{n+2}{4.\left(n+1\right)}u_n\end{matrix}\right.\), \(n\in\)N*. Công thức số hạng tổng quát của dãy số (Un) là?
#Hỏi cộng đồng OLM #Toán lớp 11 1
TC Trên con đường thành công không có.... 27 tháng 11 2023 Đặt \(\dfrac{u_n}{n+1}=v_n\)
\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)
\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)
\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)
Đúng(3) VP Việt Phương 17 tháng 2 2021cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .
#Hỏi cộng đồng OLM #Toán lớp 11 1
HT Hoàng Tử Hà 18 tháng 2 2021 \(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)
\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)
\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)
....
\(\Rightarrow u_n=5\sqrt{n}-3\)
\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)
Đúng(0) BC Big City Boy 23 tháng 12 2023Cho dãy số (Un) xác định bởi công thức: \(\left\{{}\begin{matrix}u_1=2021\\u_{n+1}=\left[1-\dfrac{1}{\left(n+1\right)^2}\right]u_n+\dfrac{2020}{\left(n+1\right)^2};\forall n\ge1\end{matrix}\right.\). Khi đó limUn bằng?
#Hỏi cộng đồng OLM #Toán lớp 11 2
TC Trên con đường thành công không có.... 23 tháng 12 2023 Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
Đúng(1) TC Trên con đường thành công không có.... 23 tháng 12 2023
Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
Đúng(1) Xem thêm câu trả lời T títtt 30 tháng 8 2023 1) cho dãy số un=\(n^2-1\)�=3�−1a) Tính b) 99 là số hạng thứ mấy của dãy2) cho dãy số \(u_n=\dfrac{2n-1}{n+1}\)u1,u2,u3,u4b) \(\dfrac{13}{7}\) là số hạng thứ mấy của...Đọc tiếp
1) cho dãy số
a) Tính
2) cho dãy số
b) \(\dfrac{13}{7}\) là số hạng thứ mấy của dãy #Hỏi cộng đồng OLM #Toán lớp 11 2
M meme 30 tháng 8 2023 a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Đúng(0) NL Nguyễn Lê Phước Thịnh 30 tháng 8 2023

- Tuần
- Tháng
- Năm
- E ✦𝘉é✿𝘤𝘩í𝘱✦ 2 GP
- E ElmSunn 2 GP
- NT Nguyễn Trọng Đạt VIP 2 GP
- -❇️🆗𝕰𝔛𝕻𝔈𝕽ℑ𝕰𝔑𝕮𝔈𝕯✳️𝕻𝔈𝕺𝔓𝕷𝔈🆒❎- 2 GP
- D Đ𝙖̆𝙣𝙜 𝙈𝙞𝙣𝙝 (𝙈𝙚𝙤𝙠𝙤𝙣𝙝𝙤𝙣𝙜𝙪𝙤𝙣𝙜𝙩𝙝𝙪𝙤𝙘) 2 GP
- NV ✫⊰ Ngô Vũ ༒ Công Vinh ⊱✫ VIP 2 GP
- NT Nguyễn Thanh Trúc 2 GP
- LD Lê Duy Anh 2 GP
- NB Nguyễn Bá Hiếu 2 GP
- ND Nguyễn Đỗ Bảo Hân 2 GP
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng ĐóngYêu cầu VIP
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
Từ khóa » Tìm Lim Un Biết U1=2
-
Cho Dãy Số (un)xác định Bởi & U1=2 & Un+1=un+12( Nge 1 ) .. Khi ...
-
Cho Dãy Số Có Giới Hạn Un Xác định Bởi :u1=1/2 U(n+1 ... - Khóa Học
-
Cho Dãy Số (Un) Xác định Bởi U1=2 Và Un+1=Un+1/2(n Lớn Hơn ...
-
Cho Dãy Số (Un), Biết U1 = 2, Un+1 = 2Un - Haylamdo
-
Cho Dãy Số Có Giới Hạn (un) Xác định Bởi :u1=1/2 U(n+1)=1/(2-un)...
-
Cho Dãy Số (un) Biết U1 = 2 Và U(n + 1) = 2un Với Mọi N Thuộc N*. Tìm ...
-
U(n + 1) = (un + 1)/2 Với Mọi N ≥ 1. Tìm Lim Un - Toán Học Lớp 11
-
Cho Dãy Số (un) Biết U1 = 2, U N+ 1 = 2un – 1 (với N >= 1)
-
Cho Dãy Số Có Giới Hạn (un) Xác định Bởi :u1=1/2 U(n+1)=1/(2-un)
-
Tìm Lim U_n Biết U1=2 Và U_n+1=(u_n+1)/2
-
Tổng Hợp Các Bài Toán Về Dãy Số, Giới Hạn Trong đề Thi Hsg Các Tỉnh ...
-
Chuyên đề 7 Dãy Số - Tài Liệu Text - 123doc
-
Cho Dãy Số (un) được Xác định Bởi: U1 = 1 Và Un+1= Un + 1/ 2^n ( N ...
-
Một Số Phương Pháp Tìm Số Hạng Tổng Quát Của Dãy Số - Giáo Án Mẫu