Cho Dãy Số (Un) Xác định Bởi U1=2 Và Un+1=Un+1/2(n Lớn Hơn ...

I. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ

1. Định nghĩa

Định nghĩa 1

Ta nói dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.

Kí hiệu: limn→+∞un=0 hay un → 0 khi n → +∞.

Ví dụ 1. Cho dãy số (un) với un=−1nn2. Tìm giới hạn dãy số

Giải

Xét un=1n2=1n2

Với n > 10 n2 > 102 = 100

⇒un=1n2=1n2<1100

⇒limn→∞un=0.

Định nghĩa 2

Ta nói dãy số (vn) có giới hạn là a (hay vn dần tới a) khi n → +∞ nếu limn→+∞vn−a=0

Kí hiệu: limn→+∞vn=a hay vn → a khi n → +∞.

Ví dụ 2. Cho dãy số vn=−n−13+2n. Chứng minh rằng limn→∞vn=−12.

Giải

Ta có limn→∞vn+12=limn→∞−n−13+2n+12=limn→∞=123+2n=0

Do đó: limn→∞vn=−12.

2. Một vài giới hạn đặc biệt

a) limn→+∞1n=0,limn→+∞1nk=0 với k nguyên dương;

b) limn→+∞qn nếu |q| < 1;

c) Nếu un = c (c là hằng số) thì limn→+∞un=limn→+∞c=c.

Chú ý: Từ nay về sau thay cho limn→+∞un=a ta viết tắt là lim un = a.

II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN

Định lí 1

a) Nếu lim un = a và lim vn = b thì

lim (un + vn) = a + b

lim (un – vn) = a – b

lim (un.vn) = a.b

limunvn=ab (nếu b≠0)

Nếu un≥0với mọi n và limun­ = a thì:

limun=a và a≥0.

Ví dụ 3. Tính limn2−2n+1

Giải

limn2−2n+1=limn3+n2−2n+1=lim1+1n−2n31n2+1n3=lim1+1n−2n3:lim1n2+1n3

=lim1+lim1n−lim2n3:lim1n2+lim1n3

=+∞

Ví dụ 4. Tìm lim2+9n21+4n

Giải

lim2+9n21+4n=limn22n2+9n1n+4=limn2n2+9n1n+4=lim2n2+91n+4=34.

III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN

Cấp số nhân vô hạn (un) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn:

S=u1+u2+u3+...+un+...=u11−qq<1

Ví dụ 5. Tính tổng của cấp số nhân lùi vô hạn 1;−12;14;−18;...;−12n−1;...

Giải

Ta có dãy số1;−12;14;−18;...;−12n−1;... là một số cấp số nhân lùi vô hạn với công bội q=−12.

Khi đó ta có: Sn=lim1+−12+14+−18+...+−12n−1+...=11−−12=23.

IV. GIỚI HẠN VÔ CỰC

1. Định nghĩa

- Ta nói dãy số (un) có giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Kí hiệu: lim un = +∞ hay un → +∞ khi n → +∞.

- Dãy số (un) có giới hạn là –∞ khi n → +∞, nếu lim (–un) = +∞.

Kí hiệu: lim un = –∞ hay un → –∞ khi n → +∞.

Nhận xét: un = +∞ ⇔ lim(–un) = –∞

2. Một vài giới hạn đặc biệt

Ta thừa nhận các kết quả sau

a) lim nk = +∞ với k nguyên dương;

b) lim qn = +∞ nếu q > 1.

3. Định lí 2

a) Nếu lim un = a và lim vn = ±∞ thì limunvn=0

b) Nếu lim un = a > 0, lim vn = 0 và vn > 0, ∀ n > 0 thì limunvn=+∞

c) Nếu lim un = +∞ và lim vn = a > 0 thì limun.vn=+∞.

Ví dụ 6. Tính lim2n+1n.

Giải

lim2n+1n=lim2n+lim1n

Vì lim2n=+∞ và lim1n=0

⇒lim2n+1n=+∞

Từ khóa » Tìm Lim Un Biết U1=2