Cho đường Tròn (O;R) đường Kính AB Cố định. Trên Tia đối ... - Hoc24
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng- Tất cả
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Câu hỏi
Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay thanh 30 tháng 5 2018 lúc 20:34 Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho ACR. Qua C kẻ đường thẳng d vuông góc với CA. lấy điểm M bất kỳ trên đường tròn (O) không trùng với A, B. Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N, tia PA cắt đường tròn (O) tại điểm thứ hai là Q.1. Chứng minh tứ giác ACPM là tứ giác nội tiếp.2. Tính BM.BP theo R.3. Chứng minh hai đường thẳng PC và NQ song song.4. Chứng minh trọng tâm G của tam giác CMB luôn nằm trên mộ...Đọc tiếpCho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Qua C kẻ đường thẳng d vuông góc với CA. lấy điểm M bất kỳ trên đường tròn (O) không trùng với A, B. Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N, tia PA cắt đường tròn (O) tại điểm thứ hai là Q.1. Chứng minh tứ giác ACPM là tứ giác nội tiếp.2. Tính BM.BP theo R.3. Chứng minh hai đường thẳng PC và NQ song song.4. Chứng minh trọng tâm G của tam giác CMB luôn nằm trên một đường tròn cố định khi điểm M thay đổi trên đường tròn (O).
làm câu 3 thôi
Lớp 9 Toán Những câu hỏi liên quan- Lục Ninh
cho đường tròn (O;R) coa đuòng kính AB cố định. trên tia đối của tia AB lấy điểm C sao cho AC=R. qua điểm C kẻ đường thẳng d vuông góc với CA. lấy điểm M bất kì trên đường tròn (O) không trùng với A và B. tia BM cắt đường thẳng d tại P, tia PA cắt đường tròn (O) tại điểm thứ 2 là Q:
a) cm tứ giác ACPM nội tiếp và tính tích BM.BP theo R.
b) cm CA là tia phân giác của góc MCQ.
c) gọi H là giao điểm của CM và AP, cm PQ.AH=PH.AQ
d) cm trọng tâm G của tam giác CMB thuộc 1 đường tròn cố định khi điểm M thay đổi trên đường tròn (O).
Xem chi tiết Lớp 9 Toán Ôn thi vào 10 4 0 Gửi Hủy Đỗ Thị Minh Ngọc 12 tháng 4 2022 lúc 0:16Tham khảo
https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/
Đúng 2 Bình luận (1) Gửi Hủy Ngọc Nam Nguyễn k8 12 tháng 4 2022 lúc 0:20a, Xét (O), đường kính AB có: M ∈ (O)
⇒ AMB^=90° (góc nội tiếp chắn nửa đường tròn)
⇒ AM ⊥ BP ⇒ AMP^=90°
PC ⊥ AC (gt) ⇒ ACP^=90° Hay BCP^=90°
Xét tứ giác ACPM có: AMP^+ACP^=90°+90°=180°
Mà hai góc này ở vị trí đối nhau
⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP
b, Xét ΔBMA và ΔBCP có:
BMA^=BCP^=90°
PBC^: góc chung
⇒ ΔBMA ~ ΔBCP (g.g)
⇒ BMBC=BABP (các cặp cạnh tương ứng tỉ lệ)
⇒ BM.BP = BA.BC
Có BC=BA+CA=2R+R=3R
⇒ BM.BP=BA.BC=2R.3R=6R²
c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)
⇒ CPA^=CMA^ (góc nội tiếp chắn CA⏜)
Hay CPQ^=CMA^
Xét (O) có: A, M, N, Q ∈ (O)
⇒ Tứ giác AMNQ nội tiếp (O)
⇒ AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)
Mà AMC^+AMN^=180° (hai góc kề bù)
⇒ AQN^=CMA^ Hay PQN^=CMA^
Mà CPQ^=CMA^ (cmt)
⇒ CPQ^=PQN^
Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ
⇒ CP // NQ
d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I
Mà BC cố định ⇒ D cố định
Có O, D cố định ⇒ I cố định
Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)
⇒ DGDM=13
Xét ΔOMD có: GI // MO (cách vẽ)
⇒ DGDM=GIMO (hệ quả định lí Talet)
⇒ GIMO=13⇒GI=MO3=R3
Mà R không đổi
⇒ G luôn cách I một khoảng bằng R3
⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính
Đúng 2 Bình luận (1) Gửi Hủy Ngọc Nam Nguyễn k8 12 tháng 4 2022 lúc 0:21a, Xét (O), đường kính AB có: M ∈ (O)
⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)
⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°
PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°
Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°
Mà hai góc này ở vị trí đối nhau
⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP
b, Xét ΔBMA và ΔBCP có:
ˆBMA=ˆBCP=90°BMA^=BCP^=90°
ˆPBCPBC^: góc chung
⇒ ΔBMA ~ ΔBCP (g.g)
⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)
⇒ BM.BP = BA.BC
Có BC=BA+CA=2R+R=3R
⇒ BM.BP=BA.BC=2R.3R=6R²
c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)
⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)
Hay ˆCPQ=ˆCMACPQ^=CMA^
Xét (O) có: A, M, N, Q ∈ (O)
⇒ Tứ giác AMNQ nội tiếp (O)
⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)
Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)
⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^
Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)
⇒ ˆCPQ=ˆPQNCPQ^=PQN^
Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ
⇒ CP // NQ
d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I
Mà BC cố định ⇒ D cố định
Có O, D cố định ⇒ I cố định
Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)
⇒ DGDM=13DGDM=13
Xét ΔOMD có: GI // MO (cách vẽ)
⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)
⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3
Mà R không đổi
⇒ G luôn cách I một khoảng bằng R3R3
⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3
Đúng 1 Bình luận (3) Gửi Hủy Xem thêm câu trả lời- Vi Thị Trà My
Chođường tròn (O) đường kính AB cố định .Trên tia đối của AB lấy điểm C sao cho AC=R. Qua C kẻ đường thẳng d vuông góc với CA. Lấy điểm M bất kì trên đường tròn (O) không trùng với A,B.Tia BM cắt đường thẳng d tại P.Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N, tia PA cắt đường tròn (O) tại điểm thứ hai là Q.CMR: PC song song với NQ.
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 0 0 Gửi Hủy- Tú Nguyễn
Cho đường tròn (O:R) đường kính AB cố định . Trên tia đối của AB lấy điểm C sao cho AC=R . Qua C kể đường thẳng d vuông góc với CA . Lấy điểm M bất kì trên đường tròn (O) không trùng với A,B. Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N tia PA cắt đường tròn (O) tại điểm thứ hai là Q
a/ Cm A,C,P,M cùng thuộc 1 đường tròn
b/Tính BM.BP theo R
c/cm PC//NQ
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 2 0 Gửi Hủy Siêu Phẩm Hacker 7 tháng 1 2019 lúc 22:50O o A B C d M P N Q
tg là tam giác nha !
a )
Ta có : gócABM = 90o ( góc nội tiếp chắn nửa đường tròn đường kính AB )
Ta có : gócABM + gócAPM = 180o ( 2 góc kề bù )
=> gócAPM = 180o - gócABM = 180o - 90o = 90o
Xét tứ giác ACPM , có :
gócACP = 90o ( gt )
gócAPM = 90o ( cmt )
gócACP + gócAPM = 90o + 90o =180o
Do đó : tứ giác ACPM nội tiếp được đường tròn ( có tổng số đo 2 góc đối diện bằng 180o )
=> A , C , P , M cùng thuộc 1 đường tròn .
Đúng 0 Bình luận (0) Gửi Hủy Hoàng Huy Hiếu 1 tháng 4 2022 lúc 18:15 PC song song NQ Đúng 0 Bình luận (0) Khách vãng lai đã xóa Gửi Hủy- Nguyễn Thu Băng
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Qua C kẻ đường thẳng d vuông góc với CA. lấy điểm M bất kỳ trên đường tròn (O) không trùng với A, B. Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N, tia PA cắt đường tròn (O) tại điểm thứ hai là Q.1. Chứng minh tứ giác ACPM là tứ giác nội tiếp.2. Tính BM.BP theo R.3. Chứng minh hai đường thẳng PC và NQ song song.4. Chứng minh trọng tâm G của tam giác CMB luôn nằm trên một đường tròn cố định khi điểm M thay đổi trên đường tròn (O).
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 0 0 Gửi Hủy- Huyền Anh Đặng
Bài 4(3 điểm). Cho đường tròn (O; R), đường kính AB. Lấy điểm C bất kỳ trên đường tròn (O; R) (C không trùng A; AC < BC). Qua C kẻ dây CD của đường tròn (O; R) vuông góc với đường kính AB tại I. Lấy điểm E sao cho I là trung điểm AE. Tia DE cắt đoạn thẳng BC tại F. Gọi K là trung điểm của BE. 1) Chứng minh tam giác BCD cân. 2) Chứng minh AC I/ DE và chứng minh F thuộc đường tròn tâm K đường kính BE. 3) Chứng minh IF là tiếp tuyến của đường tròn tâm K đường kính BE. 4) Lấy điểm M trên đoạn thẳng OC sao cho OM = CI. Chứng minh khi điểm C di chuyển trên nửa đường tròn (O; R) không chứa điểm D (C khác A, B) thì điểm M chạy trên một đường tròn cố định.
Xem chi tiết Lớp 9 Toán 0 0 Gửi Hủy- Nguyễn Minh Quân
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Chứng minh tứ giác MCAE nội tiếp
b) Chứng minh BE.BM = BF.BN
Xem chi tiết Lớp 9 Toán 1 0 Gửi Hủy Nguyễn Lê Phước Thịnh CTV 4 tháng 3 2023 lúc 22:27a: Xét (O) có
ΔBEA nội tiếp
BA là đường kính
=>ΔBEA vuông tại E
góc MCA+góc MEA=90+90=180 độ
=>MCAE nội tiếp
b: góc BFA=1/2*sđ cung BA=1/2*180=90 độ
Xét ΔBFA vuông tại F và ΔBCN vuông tai C có
góc B chung
=>ΔBFA đồng dạng với ΔBCN
=>BF/BC=BA/BN
=>BC*BA=BF*BN
Xét ΔBEA vuông tại E và ΔBCM vuông tại C có
góc EBA chung
=>ΔBEA đồng dạng với ΔBCM
=>BE/BC=BA/BM
=>BC*BA=BE*BM=BF*BN
Đúng 1 Bình luận (1) Gửi Hủy- Linh nguyễn
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Khi EF=4R/ căn 5. Tính DE,DF theo R
b) Cho A,B,C cố định.CMR tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên 1 đường thẳng cố định khi E chạy trên đường tròn (O)
Xem chi tiết Lớp 9 Toán 0 0 Gửi Hủy
- Bùi Thị Như Quỳnh
Cho đường tròn tâm O bán kính R và đường thẳng d cố định không cắt đường tròn . Từ điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) . Từ B kẻ đường thẳng vuông góc với OH tại H , trên tia đối của tia HB lấy điểm C sao cho HC=HB.
A,Chứng minh điểm C thuộc (O;R) và AC là tiếp tuyến của đường tròn (O)
B,Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I , OI cắt BC tại IC. Chứng minh OH.OA=OI.OK=R^2
Xem chi tiết Lớp 9 Toán Ôn tập Đường tròn 0 0 Gửi Hủy- Nguyễn Thùy Chi
Cho đường trong tâm O, bán kính R và đường thẳng d cố định không cắt đường tròn. Từ 1 điểm A bất kì trên đường thẳng d, kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB
a, CM: C thuộc đường thẳng O bán kính R và AC là tiếp tuyến của đường thẳng O bán kính R
b, Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. CM: OH.OA = OI.OK=R2
Xem chi tiết Lớp 9 Toán Chương I - Hệ thức lượng trong tam giác vuông 0 0 Gửi HủyKhoá học trên OLM (olm.vn)
- Toán lớp 9
- Ngữ văn lớp 9
- Tiếng Anh lớp 9
- Vật lý lớp 9
- Hoá học lớp 9
- Sinh học lớp 9
- Lịch sử lớp 9
- Địa lý lớp 9
Từ khóa » Tính Bm.bp Theo R
-
Ôn Thi Tuyển Sinh 10 - Phần Hình Học - Câu 2 - Trang Ánh Nam
-
Cho đường Tròn (O;R) đường Kính AB Cố định. Trên Tia đối Của Tia ...
-
Cho đường Tròn (OR) Có đường Kính A... | Xem Lời Giải Tại QANDA
-
R) đường Kính AB Cố định. Trên Tia đối Của Tia AB Lấy điểm C Sao ...
-
Chứng Minh ACPM Là Tứ Giác Nội Tiếp. Tính BM.BP Theo R - Lazi
-
Chứng Minh Tứ Giác ACPM Nội Tiếp. Tính BM.BP Theo R - Lazi
-
Chứng Minh Tứ Giác ACPM Nội Tiếp. Tính BM.BP Theo R
-
Chứng Minh ACPM Là Tứ Giác Nội Tiếp. Tính BM.BP Theo R
-
[PDF] SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG ĐỀ THI CHÍNH ...
-
R) Có đường Kính AB Cố định. Trên Tia đối Của Tia AB Lấy điểm C ...
-
Cho đường Tròn (O;R) Coa đuòng Kính AB Cố định. Trên Tia đối Của Tia ...
-
Cho đường Tròn (O;R) đường Kính AB Cố định ... - Ask & Learn 24/7
-
ON THI TUYEN SINH PHAN HINH c - Tài Liệu Text - 123doc