ON THI TUYEN SINH PHAN HINH c - Tài Liệu Text - 123doc

Tải bản đầy đủ (.doc) (12 trang)
  1. Trang chủ
  2. >>
  3. Giáo án - Bài giảng
  4. >>
  5. Tư liệu khác
ON THI TUYEN SINH PHAN HINH HOC.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (172.56 KB, 12 trang )

BÀI TẬP HÌNH HỌC_______________________________________________________________________________________1.Cho đường tròn tâm O đường kính AB. Người ta vẽ đường tròn tâm A bán kính nhỏ hơn AB, nó cắt đường tròn (O) tại Cvà D, cắt AB tại E. Trên cung nhỏ CE của (A), ta lấy điểm M. Tia BM cắt tiếp (O) tại N.a)Chứng minh BC, BD là các tiếp tuyến của đường tròn (A).b)Chứng minh NB là phân giác của góc CND.c)Chứng minh tam giác CNM đồng dạng với tam giác MND.d)Giả sử CN = a; DN = b. Tính MN theo a và b.2.Cho tam giác DEF có ∠D = 600, các góc E, F là góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao EI, FK, Ithuộc DF, K thuộc DE.a)Tính số đo cung EF không chứa điểm D.b)Chứng minh EFIK nội tiếp được.c)Chứng minh tam giác DEF đồng dạng với tam giác DIK và tìm tỉ số đồn3.Cho tam giác ABC vuông cân tại A, AD là trung tuyến. Lấy điểm M bất kỳ trên đoạn AD (M ≠ A; M ≠ D). Gọi I, K lầnlượt là hình chiếu vuông góc của M trên AB, AC; H là hình chiếu vuông góc của I trên đường thẳng DK.a)Tứ giác AIMK là hình gì?b)Chứng minh 5 điểm A, I, M, H, K cùng nằm trên một đường tròn. Xác định tâm của đường tròn đó.c)Chứng minh ba điểm B, M, H thẳng hàng.4.Cho (O) đường kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trêncung nhỏ BM, H là giao điểm của AK và MN.a)Chứng minh tứ giác BCHK nội tiếp được.b)Tính tích AH.AK theo R.c)Xác định vị trí của K để tổng (KM + KN + KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó.5.Cho (O; R), AB là đường kính cố định. Đường thẳng (d) là tiếp tuyến của (O) tại B. MN là đường kính thay đổi của (O)sao cho MN không vuông góc với AB và M ≠ A, M ≠ B. Các đường thẳng AM, AN cắt đường thẳng (d) tương ứng tại Cvà D. Gọi I là trung điểm của CD, H là giao điểm của AI và MN. Khi MN thay đổi, chứng minh rằng:a)Tích AM.AC không đổi.b)Bốn điểm C, M, N, D cùng thuộc một đường tròn.c)Điểm H luôn thuộc một đường tròn cố định.d)Tâm J của đường tròn ngoại tiếp tam giác HIB luôn thuộc một đường thẳng cố định.6.Cho tam giác ABC vuông tại A, góc B lớn hơn góc C. Kẻ đường cao AH. Trên đoạn HC đặt HD = HB. Từ C kẻ CEvuông góc với AD tại E.a)Chứng minh các tam giác AHB và AHD bằng nhau.b)Chứng minh tứ giác AHCE nội tiếp và hai góc HCE và HAE bằng nhau.c)Chứng minh tam giác AHE cân tại H.d)Chứng minh DE.CA = DA.CEe)Tính góc BCA nếu HE//CA.7.Cho (O;R), đường kính AB cố định, CD là đường kính di động. Gọi d là tiếp tuyến của (O) tại B; các đường thẳng AC,AD cắt d lần lượt tại P và Q.a)Chứng minh góc PAQ vuông.b)Chứng minh tứ giác CPQD nội tiếp được.c)Chứng minh trung tuyến AI của tam giác APQ vuông góc với đường thẳng CD.d)Xác định vị trí của CD để diện tích tứ giác CPQD bằng 3 lần diện tích tam giác ABC.8.Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm O, đường kính AD. Đường cao AH, đường phân giác ANcủa tam giác cắt (O) tương ứng tại các điểm Q và P.a)Chứng minh: DQ//BC và OP vuông góc với QD.b)Tính diện tích tam giác AQD biết bán kính đường tròn là R và tgQAD = 34._______________________________________________________________________________________ Trang - 1 -BÀI TẬP HÌNH HỌC_______________________________________________________________________________________9.Cho tam giác ABC vuông ở a và góc B lớn hơn góc C, AH là đường cao, AM là trung tuyến. Đường tròn tâm H bán kínhHA cắt đường thẳng AB ở D và đường thẳng AC ở E.a)Chứng minh D, H, E thẳng hàng.b)Chứng minh MAE DAE; MA DE∠ = ∠ ⊥.c)Chứng minh bốn điểm B, C, D, E nằm trên đường tròn tâm O. Tứ giác AMOH là hình gì?d)Cho góc ACB bằng 300 và AH = a. Tính diện tích tam giác HEC.10.Cho tam giác nhọn ABC nội tiếp (O), E là hình chiếu của B trên AC. Đường thẳng qua E song song với tiếp tuyến Ax của(O) cắt AB tại F.a)Chứng minh tứ giác BFEC nội tiếp.b)Góc DFE (D thuộc cạnh BC) nhận tia FC làm phân giác trong và H là giao điểm của BE với CF. Chứng minh A,H, D thẳng hàng.c)Tia DE cắt tiếp tuyến Ax tại K. Tam giác ABC là tam giác gì thì tứ giác AFEK là hình bình hành, là hình thoi?Giải thích.11.Cho tam giác ABC (AC > AB) có AM là trung tuyến, N là điểm bất kì trên đoạn AM. Đường tròn (O) đường kính AN.a)Đường tròn (O) cắt phân giác trong AD của góc A tại F, cắt phân giác ngoài góc A tại E. Chứng minh FE làđường kính của (O).b)Đường tròn (O) cắt AB, AC lần lượt tại K, H. Đoạn KH cắt AD tại I. Chứng minh hai tam giác AKF và KIF đồngdạng.c)Chứng minh FK2 = FI.FA.d)Chứng minh NH.CD = NK.BD.12.Cho ba điểm A, B, C thẳng hàng (điểm B thuộc đoạn AC). Đường tròn (O) đi qua B và C, đường kính DE vuông góc vớiBC tại K. AD cắt (O) tại F, EF cắt AC tại I.a)Chứng minh tứ giác DFIK nội tiếp được.b)Gọi H là điểm đối xứng với I qua K. Chứng minh góc DHA và góc DEA bằng nhau.c)Chứng minh AI.KE.KD = KI.AB.AC.d)AT là tiếp tuyến (T là tiếp điểm) của (O). Điểm T chạy trên đường nào khi (O) thay đổi nhưng luôn đi qua haiđiểm B, C.13.Cho tam giác ABC có ba góc nhọn. Vẽ trung tuyến AM, phân giác AD của góc BAC. Đường tròn ngoại tiếp tam giácADM cắt AB tại P và cắt AC tại Q.a)Chứng minh BAM PQM; BPD BMA∠ = ∠ ∠ = ∠.b)Chứng minh BD.AM = BA.DP.c)Giả sử BC = a; AC = b; BD = m. Tính tỉ số BPBM theo a, b, m.d)Gọi E là điểm chính giữa cung PAQ và K là trung điểm đoạn PQ. Chứng minh ba điểm D, K, E thẳng hàng.e)14.Cho hình thoi ABCD có góc nhọn BAD∠ = α. Vẽ tam giác đều CDM về phía ngoài hình thoi và tam giác đều AKDsao cho đỉnh K thuộc mặt phẳng chứa đỉnh B (nửa mặt phẳng bờ AC).a)Tìm tâm của đường tròn đi qua 4 điểm A, K, C, M.b)Chứng minh rằng nếu AB = a, thì BD = 2a.sin2α.c)Tính góc ABK theo α.d)Chứng minh 3 điểm K, L, M nằm trên một đường thẳng.15.Cho nửa đường tròn đường kính AB = 2r, C là trung điểm của cung AB. Trên cung AC lấy điểm F bất kì. Trên dây BF lấyđiểm E sao cho BE = AF.a)Hai tam giác AFC và BEC qua hệ với nhau như thế nào? Tại sao?_______________________________________________________________________________________ Trang - 2 -BÀI TẬP HÌNH HỌC_______________________________________________________________________________________b)Chứng minh tam giác EFC vuông cân.c)Gọi D là giao điểm của AC với tiếp tuyến tại B của nửa đường tròn. Chứng minh tứ giác BECD nội tiếp được.d)Giả sử F di động trên cung AC. Chứng minh rằng khi đó E di chuyển trên một cung tròn. Hãy xác định cung trònvà bán kính của cung tròn đó.16.Cho (O; r) và hai đường kính bất kì AB và CD. Tiếp tuyến tại A của (O) cắt đường thẳng BC và BD tại hai điểm tươngứng là E, F. Gọi P và Q lần lượt là trung điểm của EA và AF.a)Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn OA.b)Hai đường kính AB và Cd có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất? Hãy tính diệntích đó theo r.17.Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B. Vẽ dây AE của (O1) tiếp xúc với (O2) tại A; vẽ dây AF của (O2) tiếpxúc với (O1) tại A.a)Chứng minh rằng 22BE AEBF AF=.b)Gọi C là điểm đối xứng với A qua B. Có nhận xét gì về hai tam giác EBC và FBC.c)Chứng minh tứ giác AECF nội tiếp được.18.Cho tam giác ABC cân tại A nội tiếp trong đường tròn, P là một điểm trên cung nhỏ AC ( P khác A và C). AP kéo dài cắtđường thẳng BC tại M.a)Chứng minh ABP AMB∠ = ∠.b)Chứng minh AB2 = AP.AM.c)Giả sử hai cung AP và CP bằng nhau, Chứng minh AM.MP = AB.BM.d)Tìm vị trí của M trên tia BC sao cho AP = MP.e)Gọi MT là tiếp tuyến của đường tròn tại T, chứng minh AM, AB, MT là ba cạnh của một tam giác vuông.19.Cho tam giác ABC có AB = AC. Các cạnh AB, BC, CA tiếp xúc với (O) tại các điểm tương ứng D, E, F.a)Chứng minh DF//BC và ba điểm A, O, E thẳng hàng.b)Gọi giao điểm thứ hai của BF với (O) là M và giao điểm của DM với BC là N. Chứng minh hai tam giác BFC vàDNB đồng dạng; N là trung điểm của BE.c)Gọi (O’) là đường tròn đi qua ba điểm B, O, C. Chứng minh AB, AC là các tiếp tuyến của (O’).20.Cho (O) và một dây ABM tùy ý trên cung lớn AB.a)Nêu cách dựng (O1) qua M và tiếp xúc với AB tại A; đường tròn (O2) qua M và tiếp xúc với AB tại B.b)Gọi N là giao điểm thứ hai của hai đường tròn (O1) và (O2). Chứng minh 0AMB ANB 180∠ + ∠ =. Có nhậnxét gì về độ lớn của góc ANB khi M di động.c)Tia MN cắt (O) tại S. Tứ giác ANBS là hình gì?d)Xác định vị trí của M để tứ giác ANBS có diện tích lớn nhất.21.Cho tam giác ABC vuông tại A, BC = 5, AB = 2ACa)Tính ACb)Từ A hạ đường cao AH, trên AH lấy một điểm I sao cho AI = AH. Từ C kẻ Cx // AH. Gọi giao điểm của BI vớiCx là D. Tính diện tích của tứ giác AHCD.c)Vẽ hai đường tròn (B, AB) và (C, AC). Gọi giao điểm khác A của hai đường tròn này là E. Chứng minh CE làtiếp tuyến của đườn tròn (B).22.Cho tam giác ABC vuông tại A. Đường cao AH chia cạnh huyền thành hai đoạn: BH = 4cm; CH = 9cm. Gọi D, E theothứ tự đó là chân đường vuông góc hạ từ H xuống AB và AC.a)Tính độ dài đoạn thẳng DE?b)Chứng minh đẳng thức AE.AC = AD.AB?c)Gọi các đường tròn (O), (M), (N) theo thứ tự ngoại tiếp các tam giác ABC, DHB, EHC. Xác định vị trí tương đốigiữa các đường tròn: (M) và (N); (M) và (O); (N) và (O)?_______________________________________________________________________________________ Trang - 3 -BÀI TẬP HÌNH HỌC_______________________________________________________________________________________d)Chứng minh DE là tiếp tuyến chung của hai đường tròn (M) và (N) và là tiếp tuyến của đường tròn đường kínhMN?23.Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm D khác A và B. Trên đường kính AB lấy điểm C và kẻCH AD. Đường phân giác trong của góc DAB cắt đường tròn tại E và cắt CH tại F, đường thẳng DF cắt đường tròn tại N. a)Chứng minh tứ giác AFCN nội tiếp được?b)Chứng minh ba điểm N, C, E thẳng hàng?24.Cho hai đường tròn (O) và (O’), tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài DE, D Î (O), E Î (O’). Kẻ tiếp tuyếnchung trong tại A, cắt DE tại I. Gọi M là giao điểm của OI và AD, M là giao điểm của O’I và AE. a)Tứ giác AMIN là hình gì? Vì sao? b)Chứng minh hệ thức IM.IO = IN.IO’c)Chứng minh OO’ là tiếp tuyến của đường tròn có đường kính DE d)Tính DE biết OA = 5cm; O’A = 3,2cm25.Cho tam giác PMN có PM = MN, ·0PMN 80= . Trên nửa mặt phẳng bờ PM không chứa điểm N lấy điểm Q sao cho»¼QP QM=, ·0QMP 25= a)Chứng minh tứ giác PQMN nội tiếp được.b)Biết đường cao MH của tam giác PMN bằng 2cm. Tính diện tích tam giác PMN.26.Cho tam giác PNM. Các đường phân giác trong của các góc M và N cắt nhau tại K, các đường phân giác ngoài của cácgóc M và N cắt nhau tại H.a)Chứng minh KMHN là tứ giác nội tiếp.b)Biết bán kính đường tròn ngoại tiếp tứ giác KMHN bằng 10cm và đoạn KM bằng 6cm, hãy tính diện tích tam giácKMH. 27.Tìm tọa độ giao điểm A và B của hai đồ thị các hàm số y = 2x + 3 và y = x2. Gọi D và C lần lượt là hình chiếu vuông góccủa A và B lên trục hoành. Tính diện tích tứ giác ABCD.28.Thực hiện:a)Cho tam giác ABC có BC = a, AC = b, AB = c, G là trọng tâm. Gọi x, y, z lần lượt là khoảng cách từ G tới cáccạnh a, b, c. Chứng minh x y zbc ac ab= =b)Giải phương trình:25 4 2025x 1 y 3 z 24 104x 1 y 3 z 24 + + − + + = − + + ÷ ÷+ − + 29.Cho tam giác ABC vuông tại A , BC = 5, AB = 2ACa)Tính ACb)Từ A hạ đường cao AH, trên AH lấy một điểm I sao cho AI = 13AH. Từ C kẻ Cx // AH. Gọi giao điểm của BI vớiCx là D. Tính diện tích của tứ giác AHCD.c)Vẽ hai đường tròn (B, AB) và (C, AC). Gọi giao điểm khác A của hai đường tròn này là E. Chứng minh CE là tiếp tuyến của đườn tròn (B).30.Cho tam giác ABC vuông tại A. Đường cao AH chia cạnh huyền thành hai đoạn: BH = 4cm; CH = 9cm. Gọi D, E theothứ tự đó là chân đường vuông góc hạ từ H xuống AB và AC.a)Tính độ dài đoạn thẳng DE?_______________________________________________________________________________________ Trang - 4 -BÀI TẬP HÌNH HỌC_______________________________________________________________________________________b)Chứng minh đẳng thức AE.AC = AD.AB?c)Gọi các đường tròn (O), (M), (N) theo thứ tự ngoại tiếp các tam giác ABC, DHB, EHC. Xác định vị trí tương đối giữa các đường tròn: (M) và (N); (M) và (O); (N) và (O)?d)Chứng minh DE là tiếp tuyến chung của hai đường tròn (M) và (N) và là tiếp tuyến của đường tròn đường kính MN?31.Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm D khác A và B. Trên đường kính AB lấy điểm C và kẻ CH AD. Đường phân giác trong của góc DAB cắt đường tròn tại E và cắt CH tại F, đường thẳng DF cắt đường tròn tại N. a)Chứng minh tứ giác AFCN nội tiếp được?b)Chứng minh ba điểm N, C, E thẳng hàng?32.Cho hai đường tròn (O) và (O’), tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài DE, D ∈ (O), E ∈ (O’). Kẻ tiếp tuyếnchung trong tại A, cắt DE tại I. Gọi M là giao điểm của OI và AD, M là giao điểm của O’I và AE. a)Tứ giác AMIN là hình gì? Vì sao? b)Chứng minh hệ thức IM.IO = IN.IO’ c)Chứng minh OO’ là tiếp tuyến của đường tròn có đường kính DE d)Tính DE biết OA = 5cm; O’A = 3,2cm33.Cho tam giác PMN có PM = MN, . Trên nửa mặt phẳng bờ PM không chứa điểm N lấy điểm Q sao cho a)Chứng minh tứ giác PQMN nội tiếp đượcb)Biết đường cao MH của tam giác PMN bằng 2cm. Tính diện tích tam giác PMN.34.Cho tam giác PNM. Các đường phân giác trong của các góc M và N cắt nhau tại K, các đường phân giác ngoài của các góc M và N cắt nhau tại H.a)Chứng minh KMHN là tứ giác nội tiếp.b)Biết bán kính đường tròn ngoại tiếp tứ giác KMHN bằng 10cm và đoạn KM bằng 6cm, hãy tính diện tích tam giácKMH.35.Cho đường tròn (O; R) tiếp xúc với đường thẳng d tại A. Trên d lấy điểm H không trùng với điểm A và AH <R. Qua H kẻđường thẳng vuông góc với d, đường thẳng này cắt đường tròn tại hai điểm E và B ( E nằm giữa B và H)a)Chứng minh góc ABE bằng góc EAH và tam giác ABH đồng dạng với tam giác EAH.b)Lấy điểm C trên d sao cho H là trung điểm của đoạn AC, đường thẳng CE cắt AB tại K. Chứng minh AHEK là tứgiác nội tiếp._______________________________________________________________________________________ Trang - 5 -BÀI TẬP HÌNH HỌC_______________________________________________________________________________________c)Xác định vị trí điểm H để AB= R .36.Cho tam giác ABC có ba góc nhọn (AB < AC). Đường tròn đường kính BC cắt AB, AC theo thứ tự tại E và F. Biết BF cắtCE tại H và AH cắt BC tại D.a)Chứng minh tứ giác BEFC nội tiếp và AH vuông góc với BC.b)Chứng minh AE.AB = AF.AC.c)Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và K là trung điểm của BC.d)Tính tỉ số OKBCkhi tứ giác BHOC nội tiếp.e)Cho HF = 3 cm, HB = 4 cm, CE = 8 cm và HC > HE. Tính HC.37.Cho tam giác ABC nhọn , đường cao AH, BK, CL.Chứng minh rằng:a)2.( ).AK AL LKAB AC BC=b) 2.cosAKL ABCS S A=c)2 2 21 cos cos cosHLKABCSA B CS= − − − 38.Cho ∆ABC vuông tại A. Dựng ở miền ngoài tam giác các hình vuông ABHK và ACDEa)Chứng minh ba điểm H, A, D thẳng hàngb)Đường thẳng HD cắt đường tròn ngoại tiếp ∆ABC tại F, chứng minh rằng ∆FBC vuông cânc)Cho biết ·0ABC 45>. Gọi M là giao điểm của BP và ED, chứng minh rằng năm điểm B, K, E, M, C cùng thuộcmột đường trònd)Chứng minh MC là tiếp tuyến của đường tròn (ABC)HD:a) Từ gt chứng minh: ··0HAB DAC 45= = rồi chứng minh:···0HAB BAC DAC 180+ + =⇒ H, A, D thẳng hàng.b) Chứng minh · ·0 0FBC 45 ,BFC 90= =. Suy ra ∆BFC vuôngcânc) Chứng minh ···0BKC BEC BMC 45= = =, từ đó suy ra B, K,E, M, C cùng thuộc một đường tròn. Chú ý: đến FMDC là tứgiác nội tiếp.d) Chứng minh ∆FCM vuông cân, ·0FCM 45=. Từ đó ta có:··0MCF FCB 90+ = hay: MC ⊥ BC ⇒ MC là tiếp tuyến củađường tròn ngoại tiếp ∆ABC.39.Cho đường tròn tâm O, đường kính AB. Trên đoạn thẳng OB lấy một điểm H bất kì (H ≠ O, B). Trên đường thẳng vuônggóc với OB tại H, lấy một điểm M ở ngoài đường tròn. MA, MB theo thứ tự cắt đường tròn (O) tại C và D. Gọi I là giaođiểm của AD và BCa) Chứng minh rằng tứ giác MCID nội tiếpb) Chứng minh các đường thẳng AD, BC, MH đồng qui tại Ic) Gọi K là tâm đường tròn ngoại tiếp tứ giác MCID, chứng minh rằng KCOH nộitiếpHD:a)··0MCI MDI 90= =⇒ MCID nội tiếp._______________________________________________________________________________________ Trang - 6 -MFHKDECAB4321IKDCOABHMBÀI TẬP HÌNH HỌC_______________________________________________________________________________________b) Chứng minh I là trực tâm của ∆MAB rồi suy ra đường cao.MH đi qua Ic) Xét hai tam giác cân OCA và KCM, chứng minh:µ µ µ µ0 01 4 2 3C C 90 C C 90+ = ⇒ + =, từ đó suy ra KCOH nội tiếp.40.Cho điểm C thuộc đoạn thẳng AB sao cho AC = 10cm, CB = 40cm. Vẽ về một phía AB các nửa đường tròn có đườngkính theo thứ tự là AB, AC, CB và có tâm theo thứ tự là O, I, K. Đường vuông góc với AB tại C cắt nửa đường tròn (O) ởE. Gọi M, N theo thứ tự là giao điểm của EA, EB với các nửa đường tròn (I), (K)a) Chứng minh rằng EC = MNb) CmR: MN là tiếp tuyến chung của các nửa đường tròn (I), (K)c) Tính độ dài MNd) Tính diện tích hình được giới hạn bởi ba nửa đường trònHD: a) Chứng minh CMEN là hình chữ nhật ⇒ EC = MNb) Gọi S ≡ MN ∩ EC: µ µµ µ01 21 2M M C C 90+ = + =⇒ MN ⊥ MIc) Tương tự: µ µµ µ01 2 3 4N N C C 90+ = + =⇒ MN ⊥ NK ⇒ MN là tiếp tuyến chungcủa hai đường tròn.d) MN = EC = AC.BC 10.40 20(cm)= =. d) 2 2 221πAB πAC πBCS 100π(cm )2 4 4 4 = − − = ÷ 41.Cho ∆ABC vuông ở A và một điểm D nằm giữa A và B. Đường tròn đường kính BD cắt BC tại E. Các đường thẳng CD,AE lần lượt cắt đường tròn tại cá điểm thứ hai F, G. Chứng minh:a) ∆ABC ∆EBDb) Tứ giác ADEC và AFBC nội tiếpc) AC // FGd) Các đường thẳng AC, DE, BF đồng quiHD: a) ∆ABC ∆EBD (Hai tam giác vuông có µ1B chung)b) Học sinh tự chứng minh.c)µ$µ1 11C F ( E )= = ⇒ AC // FGd) Gọi S ≡ BF ∩ CA ⇒ ∆BSC có D là trực tâm. ⇒ S, D, E thẳng hàng rồi ⇒ BF, CA, ED đồng qui tại S.42.Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Các tiếp tuyến tại A của các đường tròn (O) và (O’) cắt đường tròn(O’) và (O) theo thứ tự tại C và D. gọi P và Q lần lượt là trung điểm của các dây AC và AD. Chứng minh:a) ΔABD ΔCBAb)··BQD APB=c) Tứ giác APBQ nội tiếpHD: a) Ta có: ··DAB ACB= (Cùng chắn ¼An'B)Lại có: ··ADB BAC= (Cùng chắn ¼AnB)Suy ra: ΔABD ΔCBAb) ΔABD ΔCBA ⇒ AD BD DQCA BA AP= = (Do P, Q là trung điểm của AC, AD)Và: ··BDQ BAP=. Suy ra: ΔBQD ΔAPB ⇒ ··BQD APB=c) Do ··BQD APB= suy ra: APBQ nội tiếp._______________________________________________________________________________________ Trang - 7 -1241321321EMNSKIABC12111GFSECABDn'nQPDBCAOO'BÀI TẬP HÌNH HỌC_______________________________________________________________________________________43.Cho ∆ABC vuông ở A (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A, vẽ nửa đường tròn đườngkính BH cắt AB tại E, nửa đường tròn đường kính HC cắt AC tại Fa) Chứng minh tứ giác AFHE là hình chữ nhậtb) Chứng minh BEFC là tứ giác nội tiếpc) Chứng minh AE.AB = AF.ACd) Chứng minh rằng EF là tiếp tuyến chung của hai nửa đường trònHD: a) AEHF có ba góc vuông ⇒ AEHF là hình chữ nhậtb)µµ$1 1B E F= = ⇒ BEFC nội tiếpc) ∆AEF ∆ACB (g.g) ⇒ AE.AB = AF.ACd)µ µµ µ01 2 1 2E E H H 90+ = + =⇒ EF là tiếp tuyến của (O1). Tương tự: EF là tiếptuyến của (O2)44.Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB. Hạ BN và DM cùng vuông góc với đườngchéo AC. Chứng minh:a) Tứ giác CBMD nội tiếp được trong đường trònb) Khi điểm D di động trên đường tròn thì ··BMD BCD+ không đổic) DB.DC = DN.ACHD: a) CBMD nội tiếp trong đường tròn đường kính CD. b) Khi điểm D thay đổi, tứ giác CBMD luôn là tứ giác nội tiếp ⇒··0BMD BCD 180+ =.c) Ta có: ·0ANB 90= (gt) ⇒ N ∈ (O)Mặt khác: ··BDN BAN= (Cùng chắn »BN)· ·BAN ACD= (So le trong)Suy ra: ··BDN ACD=. Lại có: ···DAC DAN DBN= = (Cùng chắn »DN) Vậy: ΔACD ΔBDN (g.g) ⇒ đpcm45.Cho ∆ABC có các góc đều nhọn, µ0A 45=. Vẽ các đường cao BD và CE của ∆ABC. Gọi H là giao điểm cảu BD và CE.a) Chứng minh tứ giác ADHE nội tiếpb) Chứng minh HD = DCc) Tính tỉ số DE : BCd) Gọi O là tâm đường tròn ngoại tiếp ∆ABC. CM: OA ⊥ DE.HD: a) Ta có: ··0AEH ADH 180+ =⇒ đpcmb) ∆v.AEC có µ0A 45=⇒·0ACD 45=⇒∆DCH vuông cântại D ⇒ HD = HC.c) ∆ADE ∆ABC (g.g) ⇒ DE AE AE 2BC AC 2AE. 2= = =.d) Dựng tia tiếp tuyến Ax với đường tròn (O), ta có ··BAx BCA=mà ··BCA AED= (cùng bù với ·DEB) ⇒ ··BAx AED=⇒ DE // Ax ⇒ OA ⊥ DE._______________________________________________________________________________________ Trang - 8 -22111O2O1FEHCABMNCOABDxOHDEABCBÀI TẬP HÌNH HỌC_______________________________________________________________________________________46.Cho đường tròn (O) đường kính AB cố định. Điểm I nằm giữa A và O sao cho 2AI AO3=. Kẻ dây MN ⊥ AB tại I. GọiC là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.a)Chứng minh tứ giác IECB nội tiếpb)Chứng minh ∆AME ∆ACM và AM2 = AE.ACc)Chứng minh AE.AC − AI.IB = AI2HD: a) Dễ thấy ··0BIE ECB 180+ =⇒ IECB nội tiếp.b) Ta có ¼»··AM AN AME ABM= ⇒ =⇒ ∆AME ∆ACM (g.g) ⇒ AM2 =AE.AC (1)c) Ta có: MI2 = AI.IB (2). Theo (1) và (2) và ĐL Pitago: AI2 = AM2 −MI2 = AE.AC − AI.IB47.Cho nửa đường tròn (O) đường kính AB. Từ A kẻ hai tiếp tuyến Ax và By. Qua điểm M thuộc nửa đường tròn, kẻ tiếptuyến thứ ba, cắt tiếp tuyến Ax và By lần lượt ở E và F.a) Chứng minh AEMO là tứ giác nội tiếpb) AM ∩ OE ≡ P, BM ∩ OF ≡ Q. Tứ giác MPOQ là hình gì? tại sao?c) Kẻ MH ⊥ AB (H ∈ AB). Gọi K ≡ MH ∩ EB. So sánh MK với KHHD: a)··0EOA OME 180+ =⇒ AEMO nội tiếpb) MPOQ là hình chữ nhật vì có ba góc vuông.c) ∆EMK ∆EFB: EM EFMK BF= do MF = BF ⇒ EM EFMK MF=.Mặt khác: ∆ABE ∆HBK: EA ABHK HB=. Vì: EF ABMF HB=(Talet)⇒ EM EAMK KH=. Vì: EM = AE ⇒ MK = KH.48.Cho đường tròn (O, R) có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác O).Đường thẳng CM cắt đường tròn (O) tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N củađường tròn ở điểm P. Chứng minh rằng:a) Tứ giác OMNP nội tiếpb) Tứ giác CMPO là hình bình hànhc) Tích CM.CN không phụ thuộc vị trí điểm Md) Khi M di động trên đoạn thẳng AB thì P chạy trên một đoạn thẳng cố địnhHD: a)··0OMP ONP 90= =⇒ ONMP nội tiếp b) OC // MP (cùng vuông góc với AB), MP = OD = OCSuy ra: CMPO là hình bình hànhc) ∆COM ∆CND (g.g) Suy ra:_______________________________________________________________________________________ Trang - 9 -O'ENMIOABCxyKHQPEFOABM1111PNEFDCOABMBÀI TẬP HÌNH HỌC_______________________________________________________________________________________CM COCD CN= ⇒ CM.CN = CO.CD = Constd) ∆ONP = ∆ODP (c.g.c) ⇒ ·0ODP 90=. Suy ra: P chạy trên đường thẳng cố định. Vì M ∈ [AB] nên P ∈ [EF]49.Cho ΔABC nội tiếp đường tròn (O). Gọi D là điểm chính giữa của cung nhỏ BC. Hai tiếp tuyến tại C và D với đường tròn(O) cắt nhau tại E. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng AB và CD; AD và CEa) Chứng minh BC // DEb) Chứng minh các tứ giác CODE và APQC nội tiếpc) Tứ giác BCQP là hình gì?HD: a) BC và DE cùng vuông góc với OD ⇒ BC // DEb)··0ODE OCE 180+ = ⇒ CODE nội tiếp Ta có: ··PAQ PCQ= (Do» »BD CD=) ⇒ APQC nội tiếp.c) BCQP là hình thang. Vì: Ta có: ··QPC CAQ= (Cùng chắn cung QC của (APQC)Lại có: ··QAC QAP= và ··QAP BCP= (cùng chắn »BD) ⇒ BC // PQ50.Cho hình vuông ABCD, điểm E thuộc cạnh BC. Qua B kẻ đường thẳng vuông góc với DE, đường thẳng này cắt cácđường thẳng DE và DC theo thứ tự ở H và Ka) Chứng minh rằng BHCD là tứ giác nội tiếpb) Tính góc ·CHKc) Chứng minh KC.KD = KH.KBd) Khi điểm E chuyển động trên cạnh BC thì điểm H chuyển động trên đường nào?HD: a)··0BHD BCD 90= =⇒ BHCD nội tiếpb)···0 0DHC DBC 45 CHK 45= = ⇒ =c) ∆KCH ∆KDC (g.g) ⇒ KC.KD = KH.KBd)·0BHD 90= ⇒ Khi E chuyển động trên đoạn BC thì H chuyển động trên »BC51.Cho ∆c.ABC (AB = AC), I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp µA, O là trung điểm của IKa) Chứng minh rằng bốn điểm B, I, C, K cùng thuộc một đường tròn tâm Ob) Chứng minh AC là tiếp tuyến của đường tròn (O)c) Tính bán kính của đường tròn (O), biết AB = AC = 20cm, BC = 24cmHD: a)··0KBI KCI 180+ = (Tính chất phân giác) ⇒ BICK nội tiếp (O)b)µ·µ011 2C OCI C I 90+ = + =$⇒ OC ⊥ AC ⇒ AC là tiếp tuyến của (O)c)2 2 2 2AH AC HC 20 12 16= − = − = (cm). 2 2CH 12OH 9AH 16= = =(cm)Vậy: OC = 2 2 2 2OH HC 9 12 225 15+ = + = = (cm)52.Cho đường tròn tâm (O; R) đường kính AB và CD vuông góc với nhau. Trong đoạn AB lấy điểm M khác 0. Đường thẳngCM cắt đường tròn (O) tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến với đường tròn (O) tại Nở điểm P. Chứng minh rằng:_______________________________________________________________________________________ Trang - 10 -QPEDCBOAKHBCADE211HBCOAKIBÀI TẬP HÌNH HỌC_______________________________________________________________________________________a)Các điểm O, M, N, P cùng nằm trên một đường tròn.b)Tứ giác CMPO là hình bình hành.c)CM.CN = 2R2 d)Khi M di chuyển trên đoạn AB thì P di chuyển ở đâu ? 53.Cho đường tròn (O, R), đường kính AB. C là điểm trên đường tròn (O, R). Trên tia đối của tia CB lấy điểm D sao cho CD= CB. Khi C chuyển động trên đường tròn (O, R) thì D chuyển động trên đường nào?54.Cho đường tròn tâm O có 2 đường kính AB và CD vuông góc với nhau. Gọi M và N lần lượt là trung điểm của OA vàOB. Đường thẳng CN cắt (O) tại I. Chứng minh ·0CMI 90〈.55.Cho hai đường tròn đồng tâm (O; R) và (O; r) với R > r. Lấy A và E là hai điểm thuộc đường tròn (O; r) , trong đó A diđộng , E cố định ( với A ≠ E) . Qua E vẽ một đường thẳng vuông góc với AE cắt đường tròn (O; R) ở B và C . Gọi M làtrung điểm của đoạn thẳng AB .a)Chứng minh EB2 +EC2 + EA2 không phụ thuộc vị trí điểm A .b)Chứng minh rằng khi điểm A di động trên đường tròn (O; r) và A≠ E thì đường thẳng CM luôn đi qua một điểmcố định ( gọi tên điểm cố định là K ) .c)Trên tia AK đặt một điểm H sao cho AH = 32AK . Khi A di động trên đường tròn (O;r) thì điểm H di động trênđường nào ? Chứng minh nhận xét đó ?56.Cho x = 3 3125 1253 9 3 927 27+ + − − + + .Chứng minh rằng x là một số nguyên . 57.Cho x > 0 , y > 0 , t > 0 . Chứng minh rằng : + ++= =xy 1 yt 1xt 1NÕu th× x= y= t hoÆc x.y.t =1y t x 58.Cho đoạn thẳng AB = a .a)Nêu cách dựng và dựng ∆ABC sao cho ·0BAC 60=và trực tâm H của ∆ABC là trung điểm của đường caoBD. b)Gọi O là tâm đường tròn ngoại tiếp ∆ABC, vẽ đường kính AG, HG cắt BC tại K. Chứng minh OK⊥BC.c)Chứng minh AOH∆ cân và tính bán kính đường tròn ngoại tiếp tam giác ABC theo a. (2 điểm)d)Tính diện tích tam giác ABC theo a.59.Cho đường tròn tâm O đường kính AB. Trên đường kính AB lấy hai điểm I và J đối xứng nhau qua O. M là một điểm(khác A và B) trên (O); các đường thẳng MO, MI, MJ thứ tự cắt (O) tại E, F, G; FG cắt AB tại C. Đường thẳng đi qua Fsong song AB cắt MO, MJ lần lượt tại D và K. Gọi H là trung điểm của FG.a)Chứng minh tứ giác DHEF nội tiếp được.b)Chứng minh CE là tiếp tuyến của đường tròn (O).60.Tam giác ABC có ba góc nhọn, các đường cao AD, BE, CF gặp nhau tại H. Đường thẳng vuông góc với AB tại B vàđường thẳng vuông góc với AC tại C cắt nhau tại G.a)Chứng minh rằng GH đi qua trung điểm M của BC.b)∆ABC ~ ∆AEFc)EDCFDBˆˆ=d)H cách đều các cạnh của tam giác ∆DEF_______________________________________________________________________________________ Trang - 11 -BÀI TẬP HÌNH HỌC_______________________________________________________________________________________61.62.63.a64.aa65.a66.a67.a68.a69.a70.a71.a72.a_______________________________________________________________________________________ Trang - 12 -

Tài liệu liên quan

  • ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC - PHẦN TOÁN KINH TẾ ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC - PHẦN TOÁN KINH TẾ
    • 18
    • 623
    • 4
  • Ôn tuyển 10- phần Hình Học Không Gian Ôn tuyển 10- phần Hình Học Không Gian
    • 2
    • 626
    • 1
  • Tài liệu Chuyên đề luyện thi ĐH phần hình học doc Tài liệu Chuyên đề luyện thi ĐH phần hình học doc
    • 2
    • 491
    • 5
  • Tài liệu Đề thi tuyển sinh vào Đại học, Cao đẳng hệ đào tạo Tại chức môn Toán doc Tài liệu Đề thi tuyển sinh vào Đại học, Cao đẳng hệ đào tạo Tại chức môn Toán doc
    • 82
    • 868
    • 1
  • Tài liệu Đề thi tuyển sinh sau Đại học phần xác suất và thống kê toán pdf Tài liệu Đề thi tuyển sinh sau Đại học phần xác suất và thống kê toán pdf
    • 25
    • 968
    • 4
  • Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 1 potx Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 1 potx
    • 22
    • 642
    • 2
  • Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 2 pot Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 2 pot
    • 23
    • 587
    • 1
  • Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 3 ppsx Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 3 ppsx
    • 18
    • 581
    • 0
  • Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 4 ppsx Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 4 ppsx
    • 21
    • 537
    • 1
  • Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 5 pdf Tài liệu tiếng Anh ôn thi tuyển sinh cao học - Phần 5 pdf
    • 21
    • 569
    • 1

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

(411 KB - 12 trang) - ON THI TUYEN SINH PHAN HINH HOC.doc Tải bản đầy đủ ngay ×

Từ khóa » Tính Bm.bp Theo R